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FOP_ORD

This document is submitted by the Space and Information Systems

Division (S&ID) of North American Aviation, Inc. to the George C. Marshall

Space Flight Center (MSFC) of the National Aeronautics and Space Admin-

istration in accordance with Contract NAS 8-20320. This report summarizes

the study activity conducted during the second quarter of the contract.
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1.0 INTRODUCTION AND SUM}_RY

This study is directed toward defining environmental control

system (ECS) concepts to meet the increased complexity and changing

thermal conditioning requiren_.nts of the electronic equipment on the

Saturn V vehicle for missions of durations varying from four and one-

half hours to one-hundred eighty days. The study objective is to

establish the optimum environmental control concepts for thermally

conditioning individual electronic packages. Essential character-

istics of the optimum environmental control systems are maximum

practicable reliability, maximum operating range, minimum weight,

minimum power, and _nimum volume. The optimum systems are to be

selected on the basis of future Saturn mission requirements, future

trend in the design and development of the electronic equipment and

being an integral part of the overall vehicle thermal system.

The results of the study effort will help to define the de-

velopments bud adv_nccz.cnts required _n the techno!oFv _ of therv.al

control methods and systems. Critical areas or pacing items for

development are to be identified. This should help to insure the

necessary development to be accomplished and on _ timely basis.

Other results from the study include design guidelines for electronic

packages to achieve optimum environmental control designs and for

integrated ECS and vehicle thermal control systems.

Longer mission duration and greater heat dissipation require-

ments together with closer tempe1'ature regulation require thermal

systems in which the control method is self regulating and is capable

of operating under widely varying conditions. The simple passive

system cannot meet these requirements. The study effort is directed

toward the investigation of system concepts which can function reliably

within widely varying conditions. These systems concepts, like the

simple passive system, will depend upon rejecting waste heat to space,

but the means of transporting heat from the source to the radiating

surface and the surface itself will be quite different. The systems

will be more complex than the pure passive approach and thus it

becomes a challenge to achieve practical, simple and reliab]P zystems.

Many alternate concepts are to be investigated and the most promising

ones are to be studied in depth.

-1-
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SU_{ARY

During this reporting period, satisfactory progress has been made

in the study effort in meeting schedules and in performing the planned

tasks. Figure 1 indicates the schedule position for the major tasks

performed. The work in Tasks l, 2 and 3 have been continued from

the previous quarter and Task _ has been initiated during this reporting

period.

In Task i, additional data have been provided to augment the basic

requirements and constraints established during the previous quarter.

These include revised estimate for power penalty, future Saturn vehicle

configurations, and some design details of the instrument unit structure.

Additional information on astrionic equipment is presented, which is

based on survey of future development in astrionic equipment and thermal

control components. Several tentative conclusions have been reached

with regards to astrionic equipment. The overall heat load will remain

relatively constant because the large power consumming equipment are

least miniaturizable. Also, heat load tends to remain constant due to

increased equipment functions and complexity. Another conclusion is

the indicated trend toward integrated astrionic equipment and coldplates.

This arrangement results in weight savings, improved coolant utilization
and improved ooerating temoerature with resulting improvement in

reliability. There are indications that the operating temperatures and

operating range may be increased without reduction in reliability by

improved manufacturing techniques. The cumulative effect of these trends

means that the environmental control requirements remain basically the
same and possibly easing to some extent.

Since future projections of heat load profiles are somewhat nebulous,

an analysis was made of existing heat load profiles which indicated that it
is possible to use hypothetical heat load profiles plotted on probability

paper to represent the complete range of possible load profiles. In

addition, the heat load profile plotted on probability paper provides a

convenient basis to determine the best combination of temperature control

methods to meet peak or spike loads and the substained heat loads.

A review of astrionic equipment package thermal design and expendable

cooling methods has been made. This included internal heat transfer

and temperature control devices and techniques for electronic packages and

various expendable cooling methods, coolant sources, design and control

concepts.

As a continuing effort, the parametric study was conducted in several
areas. These included: the application of thermoelectric cooling and

temperature control, a detailed analysis of the utilization of hydrogen

boil-off, space radiator design and analysis, temperature regulation methods,

and heat sinks. Based on the analysis conducted and the assumptions made,
it is concluded that the utilization of hydrogen boil-off is feasible and

-2-
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!
appreciable weight savings are possible by a combination of hydrogen-gas-

fluid cooler and space radiator. The study of heat sinks has been and

will continue to be directed toward establishing the regions of applica-

bility in terms of heat load capacity and duration. This effort is con-

sidered to be quite significant because it provides a readily useable

means for selecting the necessary heat sink for a particular application.

The task on integrated system synthesis and analysis was initiated

during this period and will be continued. A number of system concepts
are described with regard to some general characteristics. These and

additional concepts will be investigated in detail during the next

period. Some effort has been devoted to system reliability because of
the importance of reliability in the synthesis and analysis of the

integrated thermal systems. This effort will be expanded during the

next period.

This quarterly report is intended to serve not only as a progress

report but to be a reference document. For this reason, it contains
data reproduced from various references and detailed analysis in AppendixA.

Based on the results and progress to date, no change in the study

plan appear necessary in order to satisfactorily meet the objectives of

the study contract.

SID 66-1739
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2.0 CURRENT S_CD¥ STATUS

2.1

2.1.1

SYST_4 RE_UI_{TS AND CONSTRAINTS

Detailed data have been included in certain areas to

better define the requirements and constraints that may be

imposed on the temperature control system and astrionic

equipment for future instrument instrument unit or units.

The data provide the range of design requirements or conditions

that should be considered in this study.

Incident Heat Loads

For the future space missions indicated in the first

quarterly report, Reference l, the various vehicle orientations
and orbit oaths have been established and are illustrated in

Figure 2. These vehicle and orbit _aths have been used to
establish the incident heat loads on the various surfaces of a

simulated space vehicle. This provides the range of maximum and
minimum incident heat loads to be used in this studT.

The computation was accomplished with the aid of a commuter

program described in Reference 2. The equations used in the com-

putation is summarized in Table 1. The equation for the incident

heat from planeta_T emission is based on the assmm_tion that the

surface emission is constant over the entire planet surface.

This appears to be reasonably accurate for the case of the

earth surface. For the lunar surface, the variation of the

surface radiation is incorporated into the computer program to

provide reasonably accurate incident heat loads from this source.

Incident heat loads for the following cases have been

computed:

a) Planet oriented: circular-near earth

circular-near lunar

b) Solar oriented: circular-near earth

circular-near lunar

c) Tangent-to-flight path: circular-near earth

synchronous earth orbit
circular-near lunar

-5-
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2.1.2 Spacecraft Power

In the first quarterly report, the assumed _ower oenalty
range was given as 200 to 500 hounds D_r kilowatt. Recent data

oresented in Reference 3, indicates that this range to be l_.,er

than what may be expected for _t_re snacecraft _ower systems.

Figure 3 from Reference 3 gives the s_stem weight and oower outnut
for a m_nbe_ of nower systems. On tb_ basis of this data, a
oower uenalty of 2_0 to 1500 ro_mds her kilo_._tt m_y be more

realistic and will be the values used in the stud_,.

E-_

o

o_

LJ
H
O_

POWER PLANT WEIGHT, LB.

Figure 3. Future Spacecraft Power Sources

-8-

SID 66-1739



NORTH AMERICAN AVIATION. INC. SPACE and INFORMATION SYSTE.%IS DIVISION

2.1.3

2.1.A

Vehicle Confi_iration

It has been assumed that the future vehicles for the

missions and mission durations selected for the studv will be

the Saturn V with various combinations of up-rated upper stages.

Figures A and 5 from Reference A illustrates a possible configura-

tion in which several instrument units are utilized. It may be
assumed that all the instrument units are not identical and that

the t_e, the number, and the @_ty cycle of the astrionic equip-

ment may va_r from a bare minimum to one which would _erform
multi-functions on a continuous or intermittent basis. This

suggests that no single thermal system design would be adequate
for all the instrument units used in this vehicle configuration.

Another nossible vehicle confi@iration is illustrated in

Figure 6 from Reference 5 in which the instrument unit is

attached to a modified Saturn-II stage. In this application,

the possibilities of utilizing the residuals are indicated.

The thermal control system design could incorporate means for

utilizing the residuals directly or the by-product of a process

which utilizes the residuals such as fuel cells which produce

water as a b_-product.

Other possible confi_irations and applications of the
instrument unit will be considered as information becomes

available from future mission and vehicle studies.

Instrument Unit Design

Although the structural details of the instrument unit

are not pertinent to this study, some indication of the possible

future design is considered useful for the concentual design of

the thermal control system. Figures 7 and 8 illustrate possible

design concepts and Figure 9 gives a list of leading lightweight
structural materials. These data are useful in the consideration

of the possible integral design of the space radiator and the
vehicle or instrument unit structure. The surface area and

volume limitations and other possible physical constraints are

of significance to this stunT. Conversely, the effect of the
thermal control system design on the structural design is of

interest and will be examined during the stu<v effort.

-9-
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Figure 9. Strength-to-Density and Elastic Modulus-to-Density

Ratios for Leading Lightweight Structural Alloys
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2.1.5 Heat Load Anal_s

Heat dissipation loads or requirements of astrionic

equipment can be exnected to vary over a relatively wide

range, particularly for the longer duration missions. The
variations in the form of short duration spikes or peaks and

_ossible wide range between the maximum and minimum heat

dissipation values require a careful analysis of the heat load
profile. The complex nature of the heat load Drofile makes it

difficult to properly size the cooling system and to determine
whether or not it would be beneficial to u_e auxiliar_ cooling

methods to augment the primary cooling _.rstem. To simply use

a mean average heat load is not adequate because it orecludes

the consideration of the various possible combinations of

cooling techniques to achieve minimum weight, power and volume.

For example, the combination of an expendable cooling method
and a recycle-closed loop system may be far superior to a some-

what less complex system which consists of only a recycle-

closed loop, but overdesigned to meet the transient or peak

loads. The over-design or the increased capacity from the

steadv load design could result in excess capacity for major

_ortion of the operating time and thus impose added penalties

gue to increased weight and _ossibly inefficient operation.

To determine a rational approach to analyzing the heat

load profile, a heat load analysis was made and the results

are given and briefly discussed.

To conduct the analysis, the AES equipment load profiles

(Reference 6, pp. 135-136) and Apollo orima_r looD load

profiles (Reference 7, pp. 32-38) were used. In general,
the electronic load profiles ;.all be nearly identical to the

required heat dissipation profile since nearly all of the energy

appears as heat.

Data from Reference 7 have been plotted in Figure lO.

Figure 10 shows a number of short duration spikes of considerable

magnitude due to intermittent use of equipment and longer

duration periods of elevated power (heat dissipation) of lower

magnitudes. All are superimposed on a steady load. These

basic characteristics are likely to be present in any electronic

equipment systems for space operation. Fi_ire ll shows the

- 16 -
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Figure IO. Load Profile, Block II Apollo Coldplate Network
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Figure ii. Frequency Load Profile, Block II Apollo Coldplate

Network
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frequency load profile of Figure i0. This frequency, load pro-
file is also plotted on probabilit_T paper, Figure 12. Figure

12 indicates the duration of the maximum peak loads to be

about 2% of the total time and a stea_r load of about 600 watts

for a period of about 70% of the total time. _The intermediate

loads between the maximum and the stead7 loads are indicated

by a series of stens and it appears that a straight line could

be a fair representation of these loads. A load olot such as

this provides a convenient means for determining the lo_d levels

and the a_proximate durations which can be used to make a weight

trade-off for various combinations of cooling methods. The

application of this data is discussed below and in the section

on the utilization of hydrogen vent gas.

The heat load data given in Reference 6 and 7 have been

summarized in Table 2 along with the average load to maximum

load ratio and the minimum load to average load ratio. The

variations in these ratios for the various mission periods pro-

vided a basis for estimating the approximate values for these

ratio for longer durations. For the longer missions, the average
load to maximum load ratio of O. 25 and the minimum load to

average load of 0.75 are assumed and used below.

The above data was used to Drovide the basis for constructing

a hypothetical load profile to be used in the analysis of the
utilization of the hydrogen vent gases. A maximum lo_d of

2,000 watts was assumed and based on this, an estimated average
load of 500 watts was established. However, 500 watts may be

too optimistic for mission durations less than 50 days, so 550

watts may be a better estimate for O to 50 day duration missions.

Using these values and the assumed ratios given in the above para-
graph, a hypothetical load profile is plotted in Figure 13.

The analysis and data presented in the above paragraphs

provide a basis for establishing load profiles in the absence

of detailed heat load data. It would be possible to establish

a set of load profiles, such as Figure 12 or 13, which represent

possible heat loads to be expected for future missions. This can

be done by assuming a range of values for the maximum, minimum

and average heat loads and various percentages of time at the
maximum and minimum heat loads. This would establish the slooe

of the line connecting the maximum and minimum heat loads and

this line would represent the intermediate heat loads as illustrated

in Figure 13.
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2.1.6

During the coming quarter, a set of load profiles will be

established to be used in determining the necessary systems which

may range from the simple open or exnendable system to the more
complex system composed of both expendable and closed-recycle

system.

Astrionic Equioment

Equipment Functions

The equipment functions, i.e., the generic equipments, re-
quired for the postulated missions may be grouped into the

following categories: (I) Guidance and Navigation, (2) Communica-

tions, and (3) Data Management. For the purpose of this stu<y,

the primary Dower supply is not considered astrionic equipment

and is treated separately. Also, primary mission experiments

and sensors are not included since these are special equipment

whose requirements could vary widely. Table 3 lists the equip-

ment functions anticipated for a large earth or lunar orbiting
vehicle.

The equipment functions listed in Table 3 should not be con-

sidered final. A final list, in practice, is selected for each

type of mission which is peculiar to that mission from exhaustive

trade-off studies and cannot be performed as part of this study.

These studies utilize such data as individual equipment's reliability,

size, weight and Dower, the required probability of mission success,

and the availability of other modes of operation. Therefore, the

list should be considered only typical. Equipment/equipment

functions which require redundancy or backup are indicated by an

asterisk. Again, the final re_mdancy and back-up requirements

are determined at the same time as the basic equipment selection

for each specific type of mission by extensive trade-off studies.

Whether the vehicle is manned (or capable of being manned) in orbit

also influences significantly the equipment functions required;
e.g., the need for disDlRys and the need for redundant or back-

up equipment if manual backup is available.

Typical Astrionic Equipment Characteristics

Table 3 gives typical heat load values of astrionic equipment
packages. Their values are also typical since, in ma_y cases,

one equipment can influence another. For example, the size

and capability of a navigation computer is influenced by the

choice of _ type., i.e., strapdown, inertial (gimballed) or

stellar-inertial. Furthermore, heat loads of individual

electronic packages are also dependent on other perfonnance

parameters such as reliability and equipment precision. Also, a

-23-
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Table 3.rl_pical Astrionic Equipment and Heat Load Values

Equipment _'/

/__Characteristics

Guidance and Control

.IMU

,Digital Computer

Star Tracker

*Horizon Sensor

Rendezvous Radar

Control System Transformer

Heat Load

Polar Earth Orbit

(Watts)

Present Future

65 35

]00 I0

15 io

2o 15

_o 4o

lO 5

*Autopilot Sensor

*Autopilot Computer

Radar Altimeter

**Displays

_ontrols

Radio Transponder

Communications

*Telemetry

*Transponder

*Transceiver, Voice/Data

.Antenna

*Tracking Beacon

Data Management

_Si_nal Conditioner

*Multiplexer

Switching and Routines

Computer

Recorder

Buffer Store

65 5o

5o IO

7o 5o

20 20

I0 I0

30 20

IO 5

40 20

ioo 5o

0 0

2O I0

20 2

h 4

5 5

5o 5

20 ]5

2o 5

Heat Load

SynEarth Orbit

(Watts)

Present Future

65 35

I00 i0

15 lO

20 15

60 4o

IO 5

65 5o

5o lO

7o 5o

20 20

I0 I0

3O 2O

lo 5

4o 2o

IOO 5o

0 0

20 I0

20 2

h 4

5 5

5o

2O

2O

Heat Load

Lunar Orbit

(Watt s)

Pres Future

170 80

200 20

15 io

20 15

300 2OO

IO 5

65 50

50 lO

7o 50

20 20

I0 I0

I00 60

50 20

8O 4O

3OO 2OO

0 0

5o 3o

2O

b

5

5 IOO

15 4o

5 40

2

h

5

I0

20

I0

* Requires Redundancy or Backup

** Manned or Manable Vehicles Only

Future - Available in the Early 1970's
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package heat load depends to a certain extent on additions to

the basic functions as the use of higher rated devices, self-
test capabilities, and redundant parts. Mission total heat loads

are not shown on Table 3 since these would be meaningless without

specifying the final equipment list, including equipment redun-
dancy and backup. Table A shows typical thermal characteristics

(temperature and temperature regulation requirements) for various

astrionic equipment packages. Again, as in the package heat load,

the values specified are typical. For a given equipment package,
wider tolerable temperature range and temperature regulation

requirements can be traded off with increased equipment complexity
by the use of higher rated parts, lower temperature coefficient

devices, and temperature compensation circuitry.

Typical Astrionic Equipment Component Characteristics

Table 5 shows the thermal characteristics of various active

components which make up astrionic packages. Again, the values
of the component characteristics are typical and, in actual

design, are determined to a large extent by the manner of their

usage in the particular application.

High temperatures result in performance degradation and

accelerate failure rates for parts and components. As noted

in Table 5, the maximum operating temperature of most components

used in astrionic equipment is dictated by reliability considera-
tions. This is due to the large number of active electronics

and devices used, each of which invariably exhibits an increasing
failure rate with higher temperatures. Figure IA shows the

failure rate acceleration factor with operating temperature
(Junction) for an integrated circuit. Many such circuits are

used in present day computers and space electronics. Failure

rate versus operating temperature of otheB typical components
are given by Figures 15 through 18. Additional failure rate

data for thin film chips, cers_&c printed circuits, and inte-
grated circuits are given by Tables 6 and 7. These illustrate

that reduction in upper temperatures (down to about 20°C) is

reflected in significantly lower failure rate. Since these

failure rates are additive in computing the circuit and the

package failure rate, it should be apparent that the reliability

is almost entirely dependent on the existing thermal environment,

the thermal environmental controls provided, and the package
internal thermal design.

- 25 -
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Figure 18. Thin Film Chip Failure Rates

- 30 -

SID 66-1739



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Recent thermal studies using infrared microradiometer
techniques (Reference 8) have shown the silicon semiconductor

devices which are operating at supposedly safe "Junction"

temDeratures of 150 to 200°C have, in realitTT, hot sDots which
are considerably higher, about 300 to 350oC. Th_.se studies

suggest that with improved thermal design and more uniform

distribution of the junctions within the silicon chio, a

semiconductor device can be made to operate at higher tempera-

tures with no decrease in reliability. Hot spots are dependent

u_on the circuit aoolication of the device and upon micro-voids
in the ce]nent bond between the silicon chin and the metal case

heat sink. As an example of the influence of circuit aoolication ,

Table 6. Failure Rates for Thin Film Chips and Ceramic
Printed ..........

TYPE CIRCUIT

Thin film chip with both

resistors and capacitors

Thin film chip with

capacitors only

Thin film chip with

resistors only

Ceramic printed circuits

with screened conductors

Each screened resistor

STRESS

* 5O C

, 50 C

* 50 C

D

LEVEL OF

CONTROL

FAILURE

•O32

•0012

•021

• O001

• OO5

DATA SOURCE

AND YEAR

I-B, 1964

(ESSD)

I-B, 1964

(E SSD )

l-B, 1964

(ESSD)

l-B, 1964

(NSD)

* See Figure 18
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Table 7. Failure Rates for Silicon Integrated Circuits

liD NUMBER

447-0010

ib -OOll

-0012

-00!3

-0014

-0015

-0017

-0018

-0019

-0020

-0021

-0024

-0025

-0026

-002 8

-0029

-0030

-0054

-0035

-0040

-0045

-0056

; -00 v2

ql -0096

447-0097

TYPE CIRCUIT

Flip Flop

Triple Nand Gate

Clocked Input Nand

Clocked Dual Nand

Input Network

Output Driver

Write Switch

Matrix Switch

Low-Level Switch

Read Preamplifier

Level Detector

Gen Purpose Amplifier

Gen Purpose Amplifier

Gen Purpose Amplifier

Demod Chopper

Driver Switch

Power Switch

GPA-2A

Unclocked Dual Nand

Triple Nand Nonresistive

Input Network

Gen Purpose Amplifier

O5 MV

Level Detector

Write Switch

STRESS

o C

AMB IENT

25

J

25

FAILURE

RATE*

•001

• 00075

•00075

• 0009

•O01

•0011

•0009

•0014

• 0007

• OO1

•00!

•001

•001

•00!

.0008

•0012

•002

• 001

• OOl

• 008

• 001

•001

•0008

•0011

•0007

DATA SOURCE

AND YEAR **

I-B, 1965

I-B, 196L

* Crit_-ia of failure assumes:

i. Parts have met all electrical, mechanical and qualification

requirements excluding burn- in.

2. System design utilizes the three y_ar end points.

** Document T4-1732.1/53 Estimates of Inherent Failurc Rates for WSIS'SB

Electronic Component Parts, Auton_tics, Jan ]b<.b

32--

SID 66-1739



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

Compar_v/Facility Person Seen Date

ITT

Federal Laboratories

Nutley, New Jersey

L. Pollack

_V. Glomb

R. Lewthwaite

R. Harrison

J. _,_rley

9-23-66

RCA

Istro-Electronics Div.

Princeton, New Jersey

D. Brennen

(Space Center) R. Scott

P. Trusello

A. Garfinkel

9-26-66

_estinghouse

Baltimore, ;_ryland

C. I. Denton

Go Perleberg
_. Borrello

P. Kiefer

H. Kraus

9-.27-66

Litton Industries

Data Systems Division

Van Nuys, California

E. Baker

Other organizations, primarily in the west coast area, will

be visited during the current quarter and the data/oplnions
obtained will be used to supplement information obtained to date.

Each organization visited were basically asked the following
questions:

(1) _at are your exoeriences regarding trends in heat loads
required to perform particular functions?

(2)

(3)

Uhat are your important design criteria with respect to

critical temperature limits and re_lation req_Jirements?

_'_at heat transfer design techniques do _rou emplo_ or

anticioate employing with higher heat densities for removing

heat from where it is generated to the package envelope?

(_) _'_at are your experiences on integral coldplate versus
vehicle coldolate cooliu_ conceots?

- 3_ -
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a silicon oo_,rertransistor operating at 50 watts consisting of

5 amps at lO volts behaves thermally quite differently from the

same device operated at 2 amps at 25 volts. These effects

cause the greatest variation (and error) in the internal thermal

resistance or the "°C/watt" apnroach to desired junction tempera-
tures.

",.strionicEquioment Internal Design State, of-the :_rt

A number of organizations familiar with the design of

astrionic equioment was visited during the past quarter by
H. Kamei and F. B. Iles of '[utonetics. The purpose of these

visits was to assess the state-of-the-art of astrionic package

thermal design. As exolained in the first quarterly report
(Ref. 1), micropackaging (packaging of microelectronics) plays

a significant role in thermal design, and therefore micropackaging
efforts were also assessed.

Persons and Companies visited were the following:

Com_any/Facilit Z

Texas Instruments

Corporate Research and Engineering

Dallas, Texas

Person Seen Date

D. Peterman 9-1A-66

Sylvania Electronic Systems J. J. Staller

I. Greenburg

M. Knep_
If. Lake

R. Deverde

M. Berberian

9-20-66

}_ssachusetts Inst, of Tech.

Instrumentation Laborato_r

_. Fertig
F. Petlalnas

L\. Hollander

9-21-66

Electronic Systems Center

0wego, New York

F. J. Price

H. C. Panaro

C. Blivin

R. ;\. Monroe

M. Rauhe

9-22-66
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The followin_ general conclusions have been reached. These

prelimina_r conclusions support the instrument oackaging con-

straints/requiraments oreviously pos$_lated (see Reference l,

p. 26).

. Heat Lo_d. Astrioni,c equiument overall heat load

w_.ll stay relatively constant. The large power users
are least miniaturizable in power. Heat load reduction

obtained by microminiaturization _._ll be countered by

increased equimment _mctions and complexity. Detailed

heat load data for specific equipments or functions have
been included in Table A and 5.

. Package Internal Heat Transfer Techniques.

Essentially-, all astrionic packages use conduction as

the principal mode of heat transfer inside equiDment

packages. Nothing new-was encountered. Various people
had various ideas on: (a) materials for reducing inter-

face contact resistance such as greases, RTV and soft
metals, (b) module hold-doom features such as the

"wedge", metal-to-metal fasteners, and sorings, (c) means
for promoting conduction across circuit boards such as

using alumina boards, using metal backup plates, and
variations of the "conner rail," and (d) heat conduction

encapsulantmaterials such as dr_ alumina granules,
alumina and beryllia:+filled nlastics, silica-filled

olastics, etc.

Most comoanies have not experienced sufficientl_r high
heat loads to warrant forced convection or ebullient

cooling inside packages. (Internal forced convection,

where used, has been for obtaining temnerat_re re_lation).

3. Temnerature Re_lation. TemDerature re_lation, where

used, is predominantl_r heater controls.

Integral Versus Vehicle Coldolate. All astrionic equip-

ment companies with experience with vehicle coldolates

are convinced that vehicle coldplate not the best

method. Invariably, weight can be saved, coolant

utilization can be imoroved, and ooerating t_uperature
can be imorovedwith resulting imnrov_u_nt in

reliability bv the int*gral coldolate method. I_._'_

Saturn V computer and data adaoter is now integral

coldolate. Comoanies using t_e vehic]_e coldolate con-

ceot clearly ooint out t_at it is a requirement imposed
on t_em.

- 35 -
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e Critical Temperature. Most designs are governed

hv equi_nent reliability; the lower the device

_nd component temoerature, the higher the reliability.

h maximum 3unction te2berature of 125 degrees

centigrade is commonly used for silicon semi-

conductor devices. Gyros ooerate fairly high,

about 170 to 180 degrees Fahrenheit, and require

the closest temnerature re_?lation. Batteries have

the most severe temnerature requirement and are the

weakest link in the thermal design. A range

of 10 to 35 degrees centigrade is tolerable, but

15 to 25 degrees centigrade is _referred.

The most freq}ently mentioned temoerature limit

was the j_mction temoerature of silicon s_ni-

conductor devices (transistor, diode, integrated
circuit). Table 8 gives the maximum temperature

used as a design criteria by a mamber of organiza-

tions surveyed.

Table 8. Silicon Devices Max Temperature Design Criteria

Or_anizatlon !

Autonetics

Honeywell

IPM

ITT-FL

Litton - DSD

MIT Inst Lab

WCA - Sp_ce

Sylvania

TI

Westinghouse

I

Criteria

Tem

12_5

125

125

8o

IYO

_On

25o

125

Temp
Reference

Location

Jnnct_on

J,mction

Junction

Junction

Case

Junction

Junction

Junction

Junction

Junction

Remarks

Minuteman criteria

Normal: IO0°C desired; 75°C very
conservative.

Rated; llO°C used.

Low power devices.

Used for conservative design.

Design objective; 17_°C abs. max.

Possible w_th proper thermal design.

Normal; 85°C very conservative.
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2.2 COMPONENT AND SUBSYSTEM REVEIW AND EVALUATION

The survey of current and advanced state-of-the art in astrionic

equipment development and associated thermal control and packaging

design techniques, and thermal control components has been the major
effort within this task. The survey effort has consisted of visits

or contacts with important equipment manufacturers. This survey

effort is a continuing one and will extend into the next quarter.

In conjunction with the survey, a review of some of the important
components of a thermal control system has been made. These are dis-

cussed in the following paragraphs. The review and evaluation effort

is to be continued and will include all the significant components
and subsystems.

2.2.1 AstrionicEquipment Package Thermal Design

Heat is transferred from and "-'_*_._._n=o--*-_^-_,_v,,_....v=_o'..... by con=

vection, conduction, radiation, or a combination of these modes;

however, one mode usually predominates. Convection may be natural

(free), forced, or accompanied by a change of phase such as boiling.

Figure 19 shows all feasible instrument cooling concepts, categorized
by the predominant heat transfer mode within and external to the

package. Figure 19 also indicates the approximate maximum heat-

removal capability for a temperature difference of &O°C. In general,

more efficient heat removal can be accomplished at the penalty of

increased weight and complexity, e.g., forced convection with the

requirement of pressure-tight enclosures. Free convection is not

applicable at zero-g condition or in the vacuum of space; however,

this mode is shown on Figure 19 for comparison. The following para-
graphs are concern6d with package internal heat transfer.

Internal Heat Transfer Devices/Techniques

Various heat transfer techniques are utilized within astrionic

packages. These include the following:

(a) Conductive Materials - Internal electronic package heat

transfer by conduction has become the most important method and will
become increasingly dominant as microminiaturization continues because:

(l) conduction heat transfer is the most pre4ictable and reliable

(meaningful tests can be conducted at laboratory conditions), (2)

miniaturization in size has shortened conduction paths, (3) signifi-

cantly smaller package heat loads with higher heat densities exist,
(&) heat conduction paths can be tailored to the heat source tempera-

ture and wattage, and (5) the pronounced trend to integral coldplates

- 37 -
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Figure 19. Electronic Instrument Cooling Concepts
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is evident. It is expected that this method will be used in nearly

all electronic equipment in the near future, particularly for pre-
dominantly digital circuitry equipment.

To the extent practical, conduction is relied upon through well-

defined, high heat conductive (metallic) paths. Steady-state heat

transfer by conduction is governed by q = KA (_T)/1. Since maximum

heat transfer is desired at minimum AT, it is obvious that a large K
(high conductivity materials), a large A (cross-sectional area) and
a small 1 (conduction length) are desired. Tables for the conducti-

vities of various materials commonly used in manufacture of astrionic

equipment are readily available in reference handbooks and design
guides. Metals such as copper, aluminum, and silver have highest

conductivity, followed by alloys such as those for aluminum and

magnesium. Since weight is of great concern to astrionic equipment,

lightweight metals such as magnesium, beryllium, aluminum, and mag-

lithium are commonly used. Most non-metals are poor conductors;

beryllia (BeO) and alumina (A12_) are significant exceptions which

are used where their properties of electrical insulation are required.

(b) Encapsu!_nts - _a_v electronic equipment, primarily those

fabricated by the "welded module" approach, are encapsulated or "potted"

for environmental protection. No ideal encapsulant is available and a

compromise exists with potted electronics between weight, repairability,
and heat transfer (conductivity). Where thermal requirements are

negligible and weight is the main factor, potting is accomplished by

semi-rigid foams, or by encapsulants which have low density fillers

such as "microballoons." Where heat transfer is required, fillers for
encapsulants are usually high conductivity materials such as anodized

aluminim particles and alumina or beryllia granules. A recent in-

novation has been the use of dry alumina granules in hermetically
sealed cans without the plastic binder. Commonly used binders include

epoxies and silicone rubber compounds.

(c) Component Fins - Component fins (erroneously called heat

sinks) are commercially available which promotes convective heat

transfer from devices such as transistors by acting as extended

surfaces. Figure 20 shows sketches of typical transistor "heat sinks."

(d) Module Retainers - The primary problem associated with con-

duction inside the packages (as well as outside the package) is contact

thermal resistance. If internal package modules, such as the heat-

conducting etched-circuit-board assemblies, are permanently or semi-

permanently cemented into place, contact resistance can be minimized.

This approach, however, would make repairs impractical and throw-away
costs excessive. A unique solution is offered by the "module-lock"

concept used successfully in the Minuteman program. The "module-lock"

concept is depicted by Figure 21. Metal spring-type module retainers

are also depicted by Figure 21. These are commercially available,

fabricated in beryllium copper, phosphor bronze, or "Danalloy," a
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Typical Semiconductor

Devices

__ ' Typical Cooling Fins

Figure 20. Typical Transistor Cooling Fins

silver heat-treatable alloy of very high thermal conductivity. The

function of the modu]e lock and spring module retainers is to apply

pressure between the module and the coldplate t0 promote heat trans-

fer, i.e., reduce contact thermal resistance. Usually the contact
areas are wiped with silicone grease not only to reduce the contact

thermal resistance, but also to reduce sliding friction.

(e) Module Heat Shunts - Modules which use epoxy glass circuit

boards, glass suostrates, and other low heat conducting materials are

frequently severely limited in heat density without some form of heat

shunting. One common method is metal backup or a metal sandwich con-

struction. Aluminum and magnesium are commonly used. The metal

backup concept is illustrated, as applied to CPC's (ceramic printed

circuits), in Figure 22. Another method is the "copper rail" where a

copper or aluminum bar is cemented onto the circuit board and heat

dissipating active components such as integrated circuits are cemented

to the rail. Another technique often used isto leave, wherever

possible, thecopper clad material in circuit boards to act as thermal

conduction paths. The clad is often thickened by dip soldering.

(f) Convection Techniques - Convection techniques involve the

circulation of a fluid, either forced or naturally, in a sealed con-

tainer. For orbiting space vehicle applications, natural convection

does not work and, therefore, a fan or pump is required. Because of

- 40 -
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'4 5

27 26

I - Interconnecting Multilayer Board

2, 3 - Ceramic or Glass Epoxy Circuit Board
- Metal Back-up Plate (Heat Shunt)

5 - Module Retainer - Spring Type

26, 27 - Electrical Connection Lead

79 - Coldplate or Package Wall

Note: See U.S. Patent 3,268,772

Hiroshi Kamei, et al

August 23, 1966

Figure 22. Metal Back-up Plate Type Heat Shunts
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the need for the fan or pump and the need for the hermetic or semi-

hermetic sealed enclosure, convection techniques are not con_nonly

used. There is, however, limited use with complex, precise electro-

mechanic devices such as a gimballed stable platform. In these

limited cases, however, the internal coolant loop is presently

required primarily for ease in precise temperature control.

With increased heat densities resulting from microminlaturiza-

tion trends, forced convection method will become more important for

cooling applicsh ion, perhaps as a supplement or backup for conduction

cooling. Usually, the internal coolant is the initial charge of an
inert dry gas. A leakproof package seal and a long-life blower are

two major concerns.

The best seal is a hermetic seal, consisting of metal-to-metal

or metal-to-glass fusions. For accessibility, however, semi-hermetic

seals are required which include various gaskets such as the O-ring
and molded seals such as Parker's gask-O-seal. Both the hermetic

and semi-hermetic seal, if used, can (and must) be tested for their

integrity. As an example, the Minuteman I guidance and control
equipment, which is hermetically sealed in a one-s_teenth inch wall

thickness magnesium enclosure containing about lO cubic feet of helium

at nominally 18 psla, is factory-tested so that the leakage will not

result in a pressure loss of 2 psi over 8 years. A mass spectrograph-

type helium leak detector is usually used. If the inert gas used is

not helium, helium can be added as a tracer; 5 or lO percent by volume
is con_nonly used.

Compact and low-weight blowers are necessarily high-speed, high

power and low-life devices. Typical life of high-speed ball-bearing
blowers is lO00 hours, however high-speed blowers can last over 5000

hours with special grease-pack and quality control. Longer duration

would necessitate hydrodynamic gas-bearing blowers. Self-lubricating

gas-hearlng blowers are used in the Minuteman I guidance package and

in the Minuteman II stable platform package which have a three-year
operating life requirement.

(g) Ebullient Cooling - Ebullient or direct liquid cooling is

accomplished by submerging the hot components in an inert fluorochemical

liquid. Heat is transferred from the hot component to the liquid by

conduction and vaporization, and from the liquid to the package walls

by convection and condensation. High heat dissipation factors are

obtained, and therefore, this cooling method may have application for

future compact electronic equipment. Studies and tests of a computer
power supply cooling application are reported in Reference 9.

Major disadvantages for this method are the following:

(i) Effectiveness is limited in a zero-g environment.

(2) Sealed and pressure-tight enclosure is required.
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(3) Fluid has high thermal expansion requiring expansion

chambers, e.g., rubber diaphragm, metal bellows, and
hollow balls.

(4) Repair and servicing limited to facilities having fill

capabiSitie s.

(5) Increased weight due to (2), (3) and the fluid itself.

(h) Heat Pumps - Heat pumps m_y be effectively utilized to pump

heat from its point of origin at the active components to the walls

of the package. The application of thermoelectric refrigeration for

this purpose was described in the first progress report (Reference l)

and further discussions are included elsewhere in this report. The

major disadvantage of the thermoelectric heat pump is the requirement

for electrical power.

A heat pump method which does not require electrical power is

the "heat pipe" (Reference lO) concept. The heat pipe is a unique

heat transfer device which may be applicable where a large quantity

of heat must be moved effectively and at low cost. The physical

processes involved are vapor heat transfer and liquid capillary

action. The pipe consists of a tube closed on both ends which has a

capillary structure (wick) along its inside surface. The pipe is
evacuated and a small amount of fluid is introduced which saturates

the capillaries and has a significant vapor pressure at the desired

operating temperature. The fluid is evaporated at the heat input

end, condensed at the heat output end, and is returned to the evapo-
rator (heat input end) by capillary attraction. The heat pipe has

an effective "conductivity" many times higher than a metal conduction

bar of the same size and would obviously have much less weight.

(i) Radiation - Radiation heat transfer of astrionic packages are

presently used in some low heat dissipation equipment which are not

amenable to conduction such as the Apollo Flight Director Display.

Unless high temperature components become universally available,

radish ion heat transfer within the equipment packages will become

decreasingly important.

Temperature Control Devices/Techniques

Astrionic equipment packages containing high temperature sensi-

tivity modules and components require sophisticated control systems.

The degree of temperature regulation required is a function of the

required equipment performance and reliability. In general, equip-

ments provide better performance and reliability with closer tempera-

ture regulation. Performance dependence on temperature regulation is
most clearly illustrated by inertial stable platforms whose performance

is directly related to performances of their inertial instruments

(gyros and accelerometers). These inertial instrunlents have tempera-

-_A-
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ture sensitive drift (error) coefficients which require temperature
control from +_ O.O1 F to _+ lO F, depending on the application and the
type of instrument.

Temperature regulation requirements are expected to remain

unchanged in future astrionic equipment from current equipment

requirements. For example, the reduced temperature coefficients of

improved inertial instruments such as the case rotated, gas bearing
free rotor gyros and dry electromechanical accelerometers will be

balanced by demands for improved system performance due to longer

operating duration. Also, in the case of semi-conductor devices in

future microelectronics, the complex integrated circuits will demand

temperature regulation similar to present day integrated circuits

and discrete transistors. This is expected since all three - the

transistor, the integrated circuit, and the complex integrated circuits,

are silicon devices manufactured by basically the same techniques and

processes.

Temperature regulation methods applicable within packages are

not basically different from methods applicable outside of the

packages. _ -- , ..............• .e_ Lnclude _ot_- _a_t._-n] systems, heating and cooling
control systems, coolant flow control systems, and storage systems.

Heater Control Systems - The heater control system is the most

common means for maintaining close temperature control. The essential

elements of this system are the sensor, the electronic controller,

and the heater. In the simplest form, the sensor and controller is

a thermostat (good for +_few degrees F) or a thermostat with a solid

state or mechanical relay (good to + 1/_ F). Precise temperature

control (better than +_ O.1 F) requi_es an electronic controller. The

method is quite versatile in that various modules can be controlled

to their individually desired control point.

In a heater system, the equipment is over-cooled and make-up or

"bias" heat is applied to maintain a "constant" heat load. In more

complex systems, an internal coolant loop is provided to facilitate

temperature control where the heater rejects heat to the circulating
coolant.

Reversible Heating/Cooling Control Systems - Reversible heating/
cooling control systems are frequently employed where electrical

power is at a premium. Such a system is typified by the thermoelectric

temperature controller described elsewhere in this quarterly report.

These systems have the advantages of: (1) minimizing peak heater

power, (2) operating at lower control temperature, allowing higher

reliability of the equipment, and (3) decreasing reaction time from a

cold-start condition. The first two advantages are illustrated by

Figure 23. The equipment temperature variation without temperature

control could be due to changing equipment heat load, changing environ-

ment, changing heat sink (e.g., coolant from the vehicle ECS) tempera-
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Figure 23. Comparison of Heater Control System with

Heater/Refrigeratlon Control System
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tures, or their combinations. The temperature control tolerance can

be made as small as for the heater system; a tolerance of + 0.01 F

is possible with an electronic controller and thermistor b_idge
sensor.

As an alternative to operating at lower control temperature, the

reversible heating/cooling method can be used as a means of tolerating

a wider heat sink temperature range. For example, a vehicle may have

a number of electronic packages which can tolerate liquid coolant

from the vehicle ECS in the range of -50 F to +150 F, and a few
packages which require coolant in the range of 0 F to lO0 F. Instead

of providing coolant at the narrower temperature range to all the

packages, the wider range can be provided to all the packages. Those

packages requiring the narrower temperature range will have incor-

porated within them the provisions for reversible heating/cooling.
In effect, this is a coarse temperature control method where the

control band is the narrower temperature range, that is, heating is

provided when the coolant drops below 0 F and cooling (local refrig-
eration) is provided when the supplied coolant exceeds lOO F.

FI_# Control of Coolant System - Thermally actuated coolant

system flow control valves, i.e., "thermovalves", provide a non-

electrical means of attaining proportional temperature control of

equipment packages. Proportional temperature control is maintained

by varying the flow of coolant to the package heat exchanger by means
of a mechanical valve which is located in the coolant line. The valve

position is varied by the action of a thermal actuator through a
mechanical linking device.

The thermal actuator usually consists of a cylinder of temperature
sensitive wax with a high coefficient of expansion impregnated with

highly conductive metal particles. The metal particles are utilized to

minimize the thermal lag in the control cirucit, thus enabling a closer

control of the reclrculated gas temperature. Figure 2A shows a com-

mercially available thermal actuator in three stages of operation. The

design criteria are included to show the capabilities of this type of

actuator. Similarly, the valve actuator could be a bimetallic element,

a bulb containing a 2-phase fluid, or an electric motor controlled by an
electronic position servo.

The thermo-valve can be used in various configurations of environ-

mental control Systems. Figure 25 is a typical application of the

device. In this application the thermo-valve is used to regulate the

coolant flow rate by sensing the temperature of recirculated gas as it
leaves the heat exchanger inside the equipment package. The thermo-

valve is pre-set at the proper control temperature at installation

under simulated operating conditions. The thermal actuator exhibits

no deterioration with age and thus allows long term temperature control
stability which makes it ideal for space systems. A small amount of

hysteresis is encountered in the operation of the thermo-valve due to

- _7 -
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Typical Thermal Actuator Characterist ics 

Weight - 1 ounce 
Output force - 20 pounds 
Ambient temperature range - -65°F t o  +250"F 
Temperature control range - -20°F t o  +250°F 
Linea r  between 30°F and 150°F 
Rate of t r ave l  - .015" per degree F, or  l e s s  when specified 
Time constant ( typical)  - Star t ing at  50°F, immerse i n  f lu id  at  100°F. 

Time t o  reach 6@ stroke, 12 seconds. 

Acknowledgement : 
Pyrodyne, Inc. 
11876 W i l s h i r e  Blvd .  
Los Angeles 25, California 

F i g u r e  24. Comerical Thermal Actuator Eutect ic  Wax "'me 
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friction and tolerances inherent in mechanical devices. Temperature
control of the re circulated gas can be maintained within a ÷ 2 F

range about the set point without difficulty for ambient temperature

in the range from -65 to +160 F. Finer temperature control requires

local temperature controller of the heater type which can operate

within the coarse temperature control provided by the flow control
system.

Heat Exchanger Cores

F Thermovalve

Coolant In Coolant Out

ItLo IsLo I
(HeT_at

Fan

Figure 25.

Hermetic Enclosure

Schematic of Typical Flow Control Temperature Regulation

System

Another form of flow control temperature regulation is internal

circulating blower (or pump) speed control. Temperature control of

heat generating components is accomplished by blower speed control

since convective heat transfer is a function of the flow (velocity)

of the recirculating coolant relative to the heat dissipating component.

Storage Systems - Storage systems can be used inside packages to
provide thermal control in the same manner that they can be utilized

for spacecraft thermal controls. Temperature control is obtained by
utilizing the heat of fusion of various materials to absorb the excess

heat. Change of state storage systems are described in References ll

and 12. These references adequately describe the storage system.
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2.2.2 Expendable Cooling Methods

For relatively short duration cooling operation, the expendable

heat sink provides a reasonably simple, lightweight system for con-

tinuous or intermittent operation, depending upon the application.

The present design of the thermal control system for the instrument

unit utilizes the expendable heat sink as the primary cooling method

because of the short duration operation. For a longer duration

operation, the expendable heat sink may be used in conjunction with a

non-expendable heat sink such as a space radiator. For this type of

application, the expendable heat sink may be designed to meet peak

loads (spikes) and for other possible situations when the non-expend-

able heat sink is non-operative. One possible situation would be an

emergency due to f& lure of the primary heat sink such as a space

radiator. Another possible advantage in utilizing the expendable
heat sink as an integral part of the thermal control system, is the

convenience in expanding the cooler capacity in terms of heat load

and/or operating time without major system changes or modifications.

There are a number of possible expendable cooling alternatives

and these are illustrated in Figure 26. The selection of a particular

method will depend upon the availability and source of coolant, the

design requirements of the major components and the overall weight,
power and volume savings. Stored or transported, expendable (water)

method is used in the present instrument unit thermal control system.
An example of a possible utilization of generated fluid (boil-off)

and the residual fuel is that of hydrogen from the Saturn S-IVB stage.

This investigation is discussed in detail in a later section.

The general area of applicability of expendable cooling methods

is briefly discussed in a later section on heat sinks.

Expendable Coolant Sources

Stored or Transported Expendables - Because of the weight and
volume penalty, only those fluids or solids that have high heat of

vaporization would be considered suitable as stored expendable. The

design of the storage container, expulsion method and the heat exchanger
will also influence the selection of the coolant.

In Reference ll, pages 39 through AA give a list of possible

expendable coolants and their thermal properties. From those listed,

only water (hv = lOO0 Btu/lb), ammonia (hv = 570 Btu/lb), and ammonia-

water solutions (hv = 950 Btu/lb) have sufficient heat of vaporization

to be considered as liquid transportable expendables. Formic acid

(hv = 560 Btu/lb) and acetimide (hv = 560 Btu/lb) are subliming solids

which can be considered for special applications. Utilization of the

evaporatin_ liquids follow existing technology. To date, the handling

of subliming solids has been neglected. Though no particular dif-
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ficulties would be expected, some experimental work on the interface

between the source and the subliming solid is required to establish
the interface temperature drop.

Generated Fluids - _uipment and personnel from other functioning

units of a space vehicle may generated fluids which can be useful for

cooling. Water with differing amounts of contaminants may come from

fuel cells, humidity condensers, wash water, and urine. Carbon dioxide

also may be produced in appreciable quantities but the use of it in

cooling is not practical.

The utilization of the generated fluid will depend upon a number
of factors which includes: (1) the availability of the fluid, that

is, the quantity and quality; (2) the design modifications or design

compromises of the source and possible increased complexity; (3)
the overall reJiability; (_) the design requirements for the expend-

able coo/ing equipment; and (5) the advantageous over other means or

approaches to cooling.

In general, the utilization of generated fluid should result in

weight savings or in design simplicity or the combination of the two

over that of other possible means for achieving the desired tempera-
ture control.

Residuals - The use of residual fluids and bo_l-off from cryogenic

tanks as expendable coolants m_v be practical if sufficient heat sink

capacity (heat of vaporization + temperature rise x capacitance) is

available. Also, it will depend on the weight of a residual fluid

cooler system to other systems.

Various physical characteristics such as heat of vaporization

and an estimate of cooler weight (compared to equivalent water boiler)

of residuals is given in Table 9.

An examination of the cooler weight indicates that the weight
(and size) do not change greatly with the residual fluid. This is

true because the circulating electronic coolant governs much of the

design by available coefficient and wall temperature requirements.

These estimates were based on a 60% glycol-_0% water so]ution and

could change if a coolant with different properties and freezing

temperature were used. The closeness to existing water boiler sizes

permits the selection of the most suitable type cooler for each
residual.

Fluids with freezing temperature and vapor pressure close to that
of water probably would be used in a cooler similar to a sublimator.

H202, N2H _ and possibly N2Oj. or 50-50 N2H_-UDMH fall into this group.
Fluids with lower freezing _emperature, with low vapor pressure and/or

heat of vaporization, would probably require a plate or wick type

boiler. MMH, BsH9, HN_ etc. fall into this group. Some improvement
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Table 9. Physical Properties of Residuals

hv tF tB PB tc Pc sg c kp /_

Fuels

H2 195
596

N_4 5_0
377

219

_0%HgN2H& 1

50_ UDMHJ 426

Oxidize rs

H202 596

HN_3 216C1 128

N20& 178

CIF5 73
NF 3 73

O2 92
F2 72

15_ .o2

Pressurants
I

N 2 85.8
He i0.5

hV =

tF =

t B =

pB =

tc =

Pc =
sg =
e =
kP=

Wc/Wctt20 =

Wc/WcH20

-&3A -&23 NA -400 188 NA
-i07 -28 73.3 270 1636 .64 I.i0 .200 Ii
35 236 .7 716 2131 1.02 .73 .21 82

- 63 189 .3 609 1195 .88 .69 .146 85
- 54 14o 1.6 435 557 .6_ .53 .I0 25

18 170 .65 635 1696 .91 .68 .152 82

.7

.7

1.25

l.&

1.3

1.2

31 302 .077 855 3146 1.&5 .63 .28 I00+

- 43 181 1.3 549 1240 1.55 .A23 .20 73

-105 53 II.0 345 838 1.87 .300 .137 35

12 70 7.0 316 IATO 1.48 .352 .08 3&

-153 8.& 289 771 1.9 .32 .13 1.3
-341 -201 NA - 88 729 NA

-362 -297 NA -182 731 NA

-365 -307 NA -201 808 NA

- 56 148 .9 520 1286 1.55 .A17 .172 120

1.6

i.&

1.2

1.2

1.2

.7

.7

.7

1.3

-345 -320 NA -232 492 NA

-456 -&52 NA -450 32 NA
.7

.7

heat of vaporization, Btu /lb

freezing temperature, F

boiling temperature, F at ]4.7 lb/sq in

saturation pressure at 40 F, psia

critical temperature, F

critical pressure, psia

specific gravity of liquid 40 F
specific heat of liquid at 40 B, Btu/(lb)(F)

thermal conductivity of liquid, Btu/(hr)(sq ft)(F)

viscosity, (ib)(sec)/(sq ft)

estimate of weight of the cooler using this residual divided by

the weight of a wick type water boiler cooling circulating fluid

to 50 F at the same heat rejection
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in boiling coefficient occurs as the vapor pressure rises. Plate

type coolers or possibly a tubular forced vortex cooler would prove

superior here. CIF3 and CIF 5 belong in this group. When both the
vapor pressure and boiling coefficients are high such as (NH3) , a

tubular forces vortex cooler would be the most practical. The

cryogenic fluids would be utilized in a gas-to-liquid heat exchanger,

such as the concentric tube type.

An excellent example of the utilization of residual and boil-off

is given in the discussion in the next section on the utilization of

hydrogen vent gas.

Design Concepts

Figure 27 illustrates three general concepts _hich utilizes

solid or liquid expendable coolants, and the general usefulness for
each are given. The selection of the particular concept will depend

mainly upon the cooling load and duration. The subliming solid con-

cept has been included, but it may not be feasible for the mission

durations considered in this study. The two concepts for liquid

expendables indicate the possibility of utilizing either stored liquid
or residual or the combination of the two.

Various designs for the heat exchanger for the expendable liquid

coolant are illustrated in Figure 28. All utilize standard heat

transfer surfaces. Evaporating water-glycol heat exchangers have been

studied for a number of years by several different organizations. A

considerable backlog of information has been accumulated. However,

very little information on boiling with water containing desolved
solids is available. Both the sublimator and wick type boilers,

which have received themost attention, have small passageways which

could be plugged by the solids in the water. Further work on evapora-

ting water cooling is being undertaken under Contract NAS 8-11291 by

AiResearch Manufacturing Co. for NASA-Huntsville.

For design purposes, the following approximate weight equation

for a water-glycol evaporative boiler may be used:

2

WWB = .0006+ hv_V@T s Pc

where _B = weight in lbs per Btu/hour heat dissipation

and _ v_T s = density, lb/cu ft of the saturated evaporant
vapor at the glycol temperature

hv = heat of vaporization of fluid, Btu/lb

Pc = critical pressure of fluid, lb/sq in

SID 66-1739



NORTH AMERICAN AVIATION, INC, SPACE and INFORMATION SYSTE.'_.IS DIVISION

Figures

Coldplate
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(Acetamide), (Formic Acid)
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____- Orifice for rough control

of temperature. A ver-
natherm for fine control

of temperature.

Spring

Subliming Solid Concept

i i

_______S _-- Temperature Control

_ H _ Coldplate

"'_" Steam Vent Tubes

_ _| Gas Pressurization

l_J__I._G_--_ j FillEntranceandResiduals

Contained Expendable Concept

__=_Pressurization Valve

_ __ Coldplate

_ Steam Vent Tube

Fuel and Residuals In

Temperature Controls

Region of Usefulness

Moderate to low heat dissipation

Short time

Rough temperature control

Restricted temperature range

Premium for extreme simplicity

Moderate to high heat dissipation

Fine temperature control

Extended temperature range

Testability required

Moderate to high heat dissipation

Testability required

Minimum coldplate package volume

Separate Tank Expendable Concept

Figure 27.. Expendable Cooling Concepts
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Figures
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m
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Coolant above 125°F using water
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Figure 28. Expendable Coolant Equipment - Active Systems
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Control Concepts

The controls can be fairly simple but as greater efficiences

are required, they tend to become heavier and more complex. A control

on the fluid temperature into the electronic equipment can be achieved
by controlling the coolant temperature out of the cooler mr heat sink.

Any fluctuations will be largely absorbed by the capacitance of the

system between the cooler and the electronic equipment. The controls

of the fluid-out temperature is accomplished in different ways for

different coolers. These are described briefly in the following
paragraphs.

For the wick type water boiler, Figure 29, the fluid temperature
can be controlled by regulating the back pressure or the wetness of

the wick. The large capacitance of contained evaporant generally
makes it more desirable to control by means of back pressure.

The sublimator, Figure 30, may be sufficiently self-regulating
to require no controls other than a shutoff valve. It m_v however

be necessary to make a circulating fluid bypass around the sublimator
with a modulating control valve.

For the plate and vortex type boilers, Figures 31 and 32, the

control of the evaporant flow on the basis of the circulating fluid
exit temperature with a modulating control valve.

Modulating control valves are inherently stable if the time

response of the valve is appreciably greater than the time response

of the system being controlled. A fluid bypass has a response time

of only a few seconds unless it is extremely large. A plate or vortex

type boiler also has a response time of only a few seconds unless it is

extremely large. The usual self-powered "Vernatherm" modulating valves

have response times from ten to thirty seconds. Simple regulation of

the sublimator, plate and vortex boilers is thus possible.

The response time of a wick type water boiler is considerably
greater than a bypass or evaporant flow controlled boiler. A back

pressure control for a wick boiler is much faster in response time

than other means of controlling the circulating fluid temperature. A

"slow" modulating back pressure valve can be stable if the wick type
boiler is slightly over-designed. The more usual electronic control

is shown in Figure 29.

Cryogenic expendable cooling can operate on a demand system as

shown in Figure 31. Since the time response of the cooler is very
rapid, a self-powered "Vernatherm" modulating type control element

can be used to give a simple reliabile control.

The various control concepts discussed above operate on a demand

basis. The flow of the expendable coolant is regulated to maintain the

recirculating fluid exit temperature within the desired range.
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Figure 29. Control Concept for Wick Water Boiler
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Figure 30. Control Concept for Water Sublimator
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Figure 31. Control Comcept for Cryogenic Gas Heat Exchanger
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Figure 32. Control Concept for Plate or Vortex Boiler
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2.3 PARAMETRIC STUDY AND TRADE-OFF ANALYSIS

Parametric study was initiated in several areas which are basic

to a thermal control system. The parametric effort is directed toward

providing data in'easy to use form which can be readily used for

either performance evaluation or comparative evaluation in the selection
and sizing of the various components which can then be analyzed more in

detail.

Those areas in which some significant results have been obtained

are discussed in the following paragraphs. The parametric study is a

continuing effort and it is expected that many areas will be investi-

gated.

2.3.1 Application of Thermoelectric Coolin_ and Temperature Control

The previous quarterly report (Reference I) stated that thermo-

electric (T/E) refrigeration was an excellent method for obtaining

heat transfer and temperature regulations within astrionic equipment
packages. (Also see paragraph on Reversible Heating/Cooling Control

Systems). Once it is determined that T/E cooling is within the scope

of the design requirement, it is necessary to determine the T/E

requirements such as the number and type of modules and the current

and operating power to satisfy these design requirements. Both experi-

mental and analytical investigations have been conducted concerning

thermoelectric heating and cooling. These studies have resulted in the

"Experimental Parameter Determination Method" which outlines a

parametric procedure for determining the performance of T/E devices in

conjunction with integral coldplates and heat exchangers of the equip-

ment package. The Experimental Parameter Determination Method is

discussed in the following paragraphs.

(For definition and background data on T_, see equipment cooling

reference books and design guides such as NavWep 16-1-532, "Methods

of Cooling Electronic Equipment". )

Experimental Parameter Determination Method

(a) The Seebeck coefficient,o C, the electrical resistance, R,

and the thermal conductance, K, of various con_nercially available

modules are determined by separate_simple experimental tests within

the temperature range of interest and expressed as functions of the

average temperature. Hence, obtain:

- 60 -

SID 66-1739



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

= (_)

R = R (T)

K = K (3)

(b)

Seebeck Parameter

Electrical Resistance Parameter

Thermal Conductance Parameter

Starting with the basic thermoelectric equation

Qnet =_ ITc - KAT - _R

where :

Qnet = Heat Pumped Per Module

I = Supply Current

Tc = Cold Side Temperature

AT =T h - Tc

f m : I.L-,+ )k.h ,,_ _o Temperature ,

(1)

and using the relationship

Ts = Th - QTotal Rf (2)

where :

Ts = Coolant Supply Temperature

Rf = Heat Dissipator Equivalent Thermal Resistance (includes
thermal contact resistance on hot side)

QTotal = (EI + Qnet) N

where: N = Number of Modules

EI = Electrical Input Power

E = Voltage Across One Module,

express Equation (i) explicit for Th as:

I_T c - II2R - Qnet (3)
Th = + Tc

K
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(c) Substituting Equation (3) into Equation (2) to obtain:

ICTc - l_R - Qnet Rf N(EI + Qnet) + Tc (&)Ts =
K

(d) Next, substitute the parametric relationships for_f, K,
and R into Equation (A) to obtain:

W S =

_(T) TcI- l_R (T)- Qnet

- N Rf [Qnet + I2R (_)

K (5)
+_:(T) IAT]+ Tc

(e) The iterative solution of Equation (5) produces Ts versus

I plots for various values of Rf. Rf as used above is related to the
coldplate thermal design as follows:

1 = Th - Ts
Rf - _W Cp _Tota].

whe re :

C = Dissipator Effectiveness =
(Toqt - Ts)

(Th - Ts)

Cp = Coolant Specific Heat

W = Coolant Mass Flow Rate

Tou t = Coolant Exit Temperature

(f) The T/E input voltage per module is given by:

E =_(T)A T + I R (T)

and the T/E input power per module is El. A typical T/E input power

versus coolant supply temperature was given as Figure 13 in previous

quarterly report, Reference 1.

A typical block diagram of a thermoelectric temperature control

system is shown in Figure 33 for a stable platform (IMU) example.

The key element in this control system is the thermoelectric heat

exchanger, which may be considered to consist of two high-fin density
coldplates mounted on both sides of a set of thermoelectric elements.

Heat is transferred from the internal recirculated gas stream to the

internal coldplate by forced convection where it is thermoelectrically

pumped to the hotter external coldplate which in turn rejects heat to
the coolant supplied by the thermal control system. By using this

approach, the supplied coolant can be of a higher temperature than

that of the internal gas.
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2.3.2 Integral Coldplate Concept Versus Vehicle Coldplate Concept

In the last quarterly report, it was postulated that the integral

coldplate concept, as distinguished from the vehicle coldplate con-

cept, would become increasingly dominant. This has been substantiated

in the industry survey conducted thus far, at least from the astrionic

equipment manufacturer' s viewpoint.

Tradeoff Considerations

The primary advantages of the vehicle fixed coldplate concept are:

(a) coolant lines would not be disconnected ln the event of package

maintenance or replacement, thereby permitting unreplaced packages to

remain operational, and (b) a standardized coldplate design is achieved

allowing minimum development and lower unit cost. These advantages

must be traded-off against the increase in weight and size due to this

approach. Weight and size increases are obvious because at the vehicle

coldplate - package interface, there are requirements for two flat,

rigid, heavy walls which are replaced in the integral coldplate concept

by one wall which need not be flat nor rigid. Also, a standardized

concept is always a compromise in which the design is for the limiting
worst-case and is over-designed (over-weight, etc.) for the general

case. It has been found in numerous instances, the entire weight of

the vehicle coldplates can be saved by changing to the integral cold-

plate concept.

The integral coldplate concept may be required also from another

aspect. In future microminiaturized equipment with increased heat

densities, there will probably be the requirement of bringing the

coolant closer, physically and thermally, to the heat source. For

example, in very fast future computers of several nanosecond speed,
all the active devices of the computer will have to be only inches

away from each other. Such forced microminiaturization, with resultant

high-heat density, will require that the heat sink (coolant) be very
close to these active devices, in the order of 1/_ inch for conduction

to be utilized. Such a design could be achieved by distributing a

number of small integral coldplates within the package. The integral

coldplate and heat exchanger concepts provide an additional advantage

of serving as a primary or secondary package structures since they

have high strength-to-weight ratio design.

Also, the replaceability of astrionic packages can be retained

in the integral coldplate concept by: (a) use of self-sealing quick

disconnects, or (b) by use of plug-in modules which can be replaced.

Self-sealing disconnects which are small and reliable and which have

low flow-pressure loss and leakage characteristics are commercially
available. Many are presently used on space vehicles. Plug-in

modules are commonplace today and will be used with greater frequency.
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This is because fault isolation to the module level is increasingly
possible due to microminiaturization. Even without fault-isolation

to the module level, it is possible to remove and replace all the

plug-in modules of a package which has failed, leaving in place the

low failure rate package chassis and its integral coldplate.

Interface Control Methods

Figure 34 depicts two different methods of specifying (control-

ling) the thermal interface between the astrionic packages and the

vehicle. The two methods, the integral coldplate concept and the
vehicle coldplate concept, are related to forced convection (Column

II of Figure 19) and conduction (Column III of Figure 19) modes of

package external heat transfer, respectively.

Parameters which are specified in the integral coldplate concept
include :

(a) Required coolant flow versus coolant supply temperature
curve.

(b) Coolant pressure lead versus coolant flow curve.

(c) Ambient temperature and absolute pressure ranges.

(d) Nechanical mounting location and increases.

(e) Hydraulic convection, e.g., type of quick disconnects.

Typical curves for (a) and (b) above are illustrated by Figures
35 and 36.

Parameters which are specified in the vehicle coldplate concept
include :

(a) Coldplate temperature or temperature distribution.

(b) Average and maximum heat flux.

(c) Mechanical mounting location and means.

(d) Special mounting features such as available area, flatness,

finish, and requirement for interface material (greases).

(e) Ambient temperature and absolute pressure ranges.

(f) Mounting procedures such as bolt torque values and sequence

of torquing.
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Thermal Interface

Typical Vehicle
Package Coldplate

Bracket

Space Radiator

Vehicle Structure

(a) Vehicle Coldplate

Thermal Interface
Thermal

Interface
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Package Bracket
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(b) Integral Coldplate

Figure 3_. Electronic Package Thermal Interface Methods
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2.3.3 Utilization of Hydrogen Boil-off

The possible proximity of the astrionic equipment to a Saturn

upper stage, such as the S-IVB or S-II, suggests the possible use of

residual cryogenic boil-off for equipment cooling. The example of

hydrogen boil-off utilization is discussed in the following para-

graphs.

For a booster stage in space which contains residual hydrogen,

heat transferred to liquid hydrogen from solar and other sources

causes the hydrogen to boil-off and increase in temperature and the

tank pressure. This process will continue until the tank design

pressure is reached. At this point, the pressure is controlled by
venting hydrogen gas through the tank pressurization valve. This is

illustrated by curve A of Figure 37. The vent gas flows from the

tank at approximately saturation pressure (design tank pressure) and

temperature (always less than -_00 F). For an estimated initial
liquid enthalpy of about 120 Btu/ib, the enthalpy of saturated hydrogen

vapor varies from about 306 Btu/ib at 0.6 atmospheres (and also at 8

atmosphere) to about 317 Btu/ib at 3 atmospheres. Thus, heat removed

from the liquid hydrogen in the tank by evaporation varies little with
tank pressure. The T-S hydrogen diagram, Figure 38 shows" this. This

is also shown in Figure 39 for the case of Hi = 108, where Hi is the

initial enthalpy of liquid hydrogen.

Based on the above estimates for saturated hydrogen gas, approxi-

mately 1200 Btu's maybe absorbed by one pound of hydrogen for a

temperature rise from saturation conditions to 0 F. This provides a

very effective heat sink for equipment cooling.

Prior to reaching the tank design pressure, the hydrogen boil-off

may be vented in different ways, as indicated in Figure 37. Curve A

of Figure 37 represents the case of no venting until the design

pressure is reached and thus limits the utilization period. The other

three approaches indicate how the boil-off may be utilized from the

point of initial pressure build-up. There may be other uses for the

hydrogen boil-off besides equipment cooling which will influence the

approach to be used.

The desired approach for hydrogen utilization is the demand basis

and this is indicated in the following analysis. For a heat load

profile such as Figure 13, a hydrogen-fluid cooler designed to handle
a uniform base load of 1OO watts would reduce the heat load for a

space radiator from 2000 watts to 1900 watts, which requires a radiator

area of 130 square feet. If this same amount of hydrogen for cooling

was available on a demand basis, half of the peak or spike loads could

be handled by the hydrogen cooler and this would reduce the radiator

(cylindrical normal to sun at one point) requirements to about 750

watts. This would mean a radiator area of 51 square feet, which is a
sizeable reduction in radiator area. If there is sufficient hydrogen
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to handle a uniform base load of 200 watts, the radiator heat load

would be reduced from 2000 watts to 1800 watts, which requires a

radiator area of 12h square feet. If this same amount of hydrogen

for cooling was available on a demand basis, the hydrogen cooler
would be able to handle all the peak or spike loads and would reduce

the radiator heat load to 300 watts. The radiator area would be

20.& square feet. This clearly indicates the desirability of a demand

basis for hydrogen utilization.

All systems utilizing hydrogen vent gas on a demand basis to
take up part or all of the cooling load of the electronic equipment

can have system advantages over any type of cooling system. For

example, the use of the vent gas continuously (though non-uniform-

ally) would reduce the necessary size of the pressure relief valve

and vent lines when they are sized by conditions In space. Another

example, the possible demand nature of the system ms_v allow a con-
siderable reduction in radiator area or elimination of radiators

since the peak loads are taken care of by the hydrogen-glycol cooler.

The hydrogen could also supply the pumping power for a liquid coolant
cirucit.

A cursory examination may show that the total venting is more

than sufficient to handle cooling requirements. It may however be

necessary to carefully determine total energy dissipation by the

electronic equipment. If this energy can be dissipated by the allow-
able boil-off, only a hydrogen-to-circulating fluid heat exchanger is

necessary. This would be the simplest, lightest and most reliable

heat sink for equipment cooling.

In those cases when the hydrogen vent gas cannot meet the total

cooling requirement or a portion of the available gas is diverted for

other purposes, the available cooling capacity may be used for peak

heat load conditions. This is particularly ideal from the standpoint

of using radiators to take care of the sustained loads and the hydrogen

circulating fluid cooler to take care of peak loads because each is
utilized under its most suitable conditions.

If, for longer duration missions, the energy of isentropic ex-

pansion of the hydrogen vent gas is also removed from the remaining

hydrogen liquid, it will make little difference at what pressure the
evaporation takes place (based on a fixed expansion ratio). It is

thus apparent that the point in time when the venting takes place will
not materially affect the quantity of gas vented. The vent H2 gas (if

used in an expander) will be vented at very low pressure which will

severely restrict the use of vent hydrogen gas for cooling. Only

low hydrogen pressure drop systems (Figure &O, type 1 and 2) could be

used. An efficient expander which has the flow utilized for cooling

on a demand basis would have a lengthy developmental period.
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Figure _0. Hydrogen Vent Gas Concepts for Cooling Electronic Equipment
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One of the important design consideration for the utilization

of the hydrogen vent gas is the location of the hydrogen gas-to-liquid

cooler in relation to the vent line and the equipment to be cooled.

In geueral, the cooler should be located in close pro imity to the

vent line, to minimize the length of the hydrogen gas duct. It will

be simpler to have longer liquid coolant lines from the astrionic

equipment to the cooler.

In order to have a controllable flow of hydrogen, the hydrogen

must be tapped off upstream of the vent pressurization valve as shown
below.

I
Vent

Vent H2 Gas _ Pressurization
Valve

Glycol -_-
I I

Glycol Cooler

System Concepts

Four possible combinations of hydrogen gas-to-liquid cooler and

space radiator are illustrated in Figure AO and disucssed in the

following paragraphs.

Type 1 radiator system is a simple bypass system for the radiator

using a highly reliable wax controls element. For example, when the

coolant temperature gets below 19 F, the bypass around the radiator

opens to control the temperature by adjusting flow thru the radiator.

When the coolant temperature gets above 21 F at the cooler exit, the

demand portion of the system (also a wax controls element) opens

sufficiently to drop the coolant temperature to the desired inlet

temperature (20 F). Bypass of the coolant around the radiator cuts

the flow in the radiator which drops the radiator exit fluid tempera-

ture and reduces the radiator cooling capacity. The minimum heat

rejection (without other incident heat inputs) will keep only a certain
amount of area above the freezing (or congealing) temperature. As the

radiator area increases (when the minimum heat rejection remains

constant) the minimum radiator fluid outlet temperature drops. The

simple type 1 system thus can be used only for missions of limited

number of days unless some means of augmenting the heat supply at

min. load is provided or a coolant with lower freezing temperature is

used. With mission lengths below some fixed number of days, a radiator

may not be necessary.
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Type 2 radiator system modifies the Type I system to operate the

radiator at a more uniform temperature. A heat exchanger, which is

bypassed until the radiator outlet temperature approaches the freezing

temperature of the coolant, drops the temperature of the coolant into

the radiator. Since the outlet temperature is controlled, the inlet

temperature can be dropped from possibly hO F to 0 F or even lower

depending on the heat exchanger effectiveness. Since the average

radiator temperature is lowered, the heat rejection per unit area is

lowered and for a fixed constant heat load, the area of the radiator

which will not drop the coolant below some fixed temperature is in-

creased. Type 2 radiator system would only be used at a length of

mission greater than Type 1 maximum mission length. This system must

compete with a Type 1 system using a coolant which will go to a lower

freezing temperature (such as alcohol). The radiator temperature for

gaseous heat dissipation versus radiator area is shown in Figure _l.

Type 3 expander system utilizes the hydrogen gas after it has been

heated up in the cooler and still is at a reasonable pressure. This

gas is then allowed to dowork which will lower the gas temperature.

This gas is then passed thru a re-cooler to extract more heat from

the circulating fluid. This system can be considered in two areas: -

where length of mission slightly exceeds the Type 1 system without a

radiator and where a radiator and heat exchanger are needed for the

Type 3 system. The expander in this system is in direct competition

with the radiator in the Type 1 system. It is doubtful that the

expander with moving parts and greater complexity would be sufficiently

lighter to favor selection of the Type 3 system. Where the minimum
fluid temperature in the radiator drops below the freezing point for

longer range missions, the expander reduces the required radiator

area and permits operation of the radiator without danger of freezing.

The expander competes with a heat exchanger in the Type 2 system for

solving the freezing problem. The heat exchanger will probably be

lighter as well as less complex. The use of both the heat exchanger

and expander would extend the mission length beyond where either

alone could. A vortex tube expander though very inefficient does look
attractive when combined with a control valve. This cannot be used if

an expander is used to reduce H2 boil-off.

In the Type _ system, the g_vcol coolant radiator is replaced by

a hydrogen gas radiator. Type _ hydrogen radiator system requires that

the radiator be broken into a number of separate elements, the number

depending on the hydrogen flow rate and the amount of radiator area.

The temperature difference between the hydrogen and circulating coolant

fluid causes the radiator to operate at a lower temperature and thus

reject less heat per unit area. This means greater radiator area is

required. Since the radiator fluid is an expendable fluid, less

meteoroid protection is required which helps to compensate for in-

creased weight due to the greater required area. The radiator has no

freeze up problems and the simplest possible controls. It can be used

for any mission length and the heat exchangers can very likely replace

existing manifolds. The pressure drop on the hydrogen side due to
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Figure _l. Radiator Minimum Temperature, Type 2 System
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the series arrangement may cause the fluid passages to be considerably
larger than equivalent glycol lines. However there is no appreciable
wet weight.

If the hydrogen circulating fluid cooler is long in relationship

to its diameter, it maybe divided into more than one cooler. By

this method, it may be possible to locate the cooler where manifolding

wou]_ be necessary. This would result in a saving of the wet weight

of that portion of the manifolds. The vent hydrogen could be ducted

to each of the multiple coolers with each controlled separately or to

first one then the other cooler. The later, with only one control

would be more reliable and have higher coefficients but might also

have more weight unless the coolers are close together.

It would be desirable to locate the cooler so it would serve as

part of the manifolding. Several possible schematic arrangements
are shown below:

Cooler After Coldplate with Maximum Heat Input

f

Cooler After Pump

Multiple Coolers

Two possible methods for the utilization of hydrogen in a coldplate
directly are illustrated in Figure 42. There are numerous problems

associated with these methods to make them _practical for further con-
sideration.
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Design Analysis

With a load distribution shown in Figure 13 and two different

average wattage heat dissipations, it was possible to calculate the

hydrogen utilization of a circulating fluid cooler. Figures i3 and
4& show this.

Figures h5, 46 and h7 show how much radiator area is required as
a function of mission time and amount of hydrogen boil-off. These
figures are based on a permissible or demand utilization of the

hydrogen in a cooler with an effectiveness of 0.8 at maximum load.

The hydrogen boil-off permissible for a demand system may be

limited by factors other than the heat input to the tank (i.e., total
quantity of hydrogen). When utilized in space, the tank may have an
available quantity in excess of the estimated boil-off. This could

become available by allowing utilization to drop the tank pressure

down to the triple point and even to some freezing (slushing) of the
hydrogen. If the actual boil-off were treated as the total boil-off

the radiator area could be calculated or estimated by interpolation
between Figures hS, h6 and $7.

Hydrogen Cms-Glycol Cooler Design

For the proper design of a hydrogen gas-glycol cooler, several

important items must be considered. The maximum reliability can be
achieved by utilizing a single surface of primary material unbroken

by welds, brazing or gaskets between the circulating coolant and space
or the circulating coolant and vent hydrogen. Unless an exorbidant

penalty is paid, this should be a design criteria. Fins can be brazed

or joined to this surface to bring about the desired hydraulic radius
and turbulance for either hot or cold fluid. Particular attention to

the metal surface temperature can prevent the heat exchanger metal at

any point from dropping in temperature below the congealing or freezing

point of the circulating fluid. This should be true at off-design

conditions and even conditions where the flow rate of the circulating
fluid drops off drastically (partial failure in cooling circuit).

Attention must also be payed to the thermal expansion since fluids at

markedly different temperatures enter the heat exchanger. High effec-

tiveness of the exchanger is required only if the vent hydrogen is in

short supply at some time period. Little however could be gained by

using effectiveness below 0.8 unless the hydrogen pressure is very low

due to the use of slush or subcooled hydrogen liquid.

Based on the above dlscussionandother considerations, a tentative
llst of design criteria for a hydrogen gas-glycol cooler has been
established:
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Figure _5. Radiator Area Requirement Versus Mission Duration

for Specified Hydrogen Boil-off
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Figure &6. Radiator Area Requirement Versus Mission Duration

for Specified Hydrogen Boil-off
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Fig_Ire %?. Radiator Area Requirement Versus Mission Duration

for Specified Hydrogen Boil-off
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i. The effectiveness should be approxlmate]y 0.8.

2. The glycol pressure drop should be approximately 0.5 psi.

3. Able to be used with hydrogen subcooled to 30°R.

_. For use with an Ethylene Glycol - 60% water solution cir-

culating cooling fluid.

5. Glycol in-tamperature, AO°F.

6. Glycol out-temperature, 20°F.

7. Heat transferred, 2 KW (max.).

8. Design hydrogen inlet temperature, 30°R to 80°R, use _2°R.

9. Assumed glycol congealing temperature, -%0°F.

lO. Wall temperature not to drop below -AO°F even when hydrogen
coefficient is three times its calculated value.

ll. The g_ycol side of the exchanger must be entirely parent
metal.

12. Hydrogen to contain no entrained liquid.

Three possible designs to meet these design criteria are illus-

trated in Figure L_. A wider range of designs are possible if the

design criteria is a_tered. The weight however should not change

significantlydue to design variations. An internally finned-single
tube heat exchanger to meet the above conditions was calculated

(Appendix A) and used as a basis for parameterization.

The weight of a vent hydrogen-to-60% glycol water exchanger can

be estimated from the equation:

_ KW)[ho_,o 6)]w = ]-( (,-

where:

Ww = wet _eight in pounds

(KW) = heat transferred in kilowatts

E = heat exchanger effectiveness

SSF = system safety factor for freezing of liquid (-AO°F)

safety factor applied to fluid coefficients
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PL = pressure drop liquid side, psi

PG = pressure of gaseous hydrogen at exchanger entrance, psia

The above equation is applicable for conditions for which the

terms do not differ too greatly from the following:

Ww = h.O

KW = 2.0

£ = 0.78

SSF = 3.0

A PL = 0.50

PG = 3.5

TG = hO°F -20OF

A graphical presentation of the above equation is given in

Figure hg.

Since two exchangers could handle twice the load (KW), the

weight is roughly proportional to the cooling load (i.e., KW appears

in the numerator to the 1st power). If an assumption for heat transfer

coefficients, independent of area, is made, then the weight is pro-
portional to area which in turn is proportional to NTU's which (for

CMIN/CMA X = .2 and .7) is proportional to -LOG10 (l-e). With a lower

safety factor, there can be higher hydrogen coefficients in the colder

3/hths of the exchanger. Though difficult to parameterize, this
appears to be reasonably correlated by (SSF) O-b5. Higher pressure

drops can be utilized for greater flow and heat transfer coefficients.

Increased coefficients and resultant lower areas appear to be reasonably

well correlated by the inverse 0.2 power of the hydrogen and glycol

pressure drops.

2.3 .h Space Radiator Design

For analyzing a space radiator, the mathematical equations and

parametric data presented in Reference ].3, pages 92 through 95, are
adequate. These equations and parametric data are useful for sizing a

radiator on a preliminary basis which can then be analyzed in detail

for the steady-state and transient cases by the use of a computer

program.

For a rectangular radiator configuration with multi-tubes or

ducts and radiating fins of rectangular cross-section, the following
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Im

Figure &9.

.90 •8_ .80 .W_ .70

Heat Exchanger Effectiveness

Unit Weight of Hydrogen-to-Glycol Cooler
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equations and parametric plots from Reference 13 may be used for
either analyzing or sizing a radiator. The length of the radiator

as a function of the coolant flow, inlet and outlet temperatures, and
other radiator dimensions can be determined from Equation 149 of
Reference 13.

yVCp
Lw : + c, L, (1)

I _vc
where :

ct P_

I - C,_"_
(2)

1 4T_c,TJ_/T_ t

f

g c,T.' [

"rwi

(3)

(g)

T_7- > _'J (5)

The terms $ and _r, can be readily determined from Figure 50 and

51, which are reproduced from Reference 13. The fin effectiveness

(_A) in the equation for the effective width Le, can be readily

determined from Figure 52, which is also reproduced from Reference ]3.

The optimum configuration can be determined by an inerative pro-
cedure in which the above equations are used to solve for the radiator

length IN for various values for the fin thickness and fin length.
For each set of radiator dimensions, the weight-to-heat transfer ratio

is determined and this data can be plotted as illustrated in Figure 53.

(See Reference 13 for the description of the nomenclature in the above

equations).
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As shown in Figure 53, the optimum fin length for various fin thickness

can be readily established. However, the optlmum-weight configuration

giving the best ratio of weight-to-heat transfer may not be the most
practicable configuration. To establish a practicable configuration,

the fin thickness, fin length and radiator length must be taken into
consideration.

For example, in Figure 53, the weight-to-heat transfer curve for

a fin thickness of 0.030 inches is relatively flat for a range of

values of fin length. This means that for a given fin thickness,
there are possibly several combinations of fin length and radiator

length that give a near optimum configuration.

Because the method for designing or sizing the space radiator is

complex, a shorter method for making rough approximations is suggested

in Reference 13- This involves neglecting the term _which is generally
smaller than the term _ in Equation I. This approximation is equivalent

to neglecting the temperature differential between the coolant fluid and

the tube wall. In most cases, the temperature differential is small

and this is illustrated in Figure 54. F_gure 54 may also be used in

conjunction with Equation 1 in which the tube wall temperature m_v be

established from the coolant temperatures, since in most cases the

coolant temperatures are given or specified.

As an aid in the designing or sizing of a space radiator, Table I0

summarizes the flow equation which ms.v be used to establish the radiator
duct or tube size for either laminar or turbulent flow conditions.

Although the equations are developed for a circular duct, they can be

readily modified for semi-circular or similar cross-sectional shape.

These equations may also be used to aid in the selection of the coolant

fluid. It is to be noted that these equations were developed for both

the single tube and multl-tube configurations. The number of tubes or
ducts is one of the initial values that must be assumed or defined in

order to proceed with the design analysis.

In Table lO, the equations for the heat transfer coefficient for

both the laminar and turbulent flow have been arbitrarily selected.

Other possible equations which may be used are summarized in Table ll.

Since the radiator weight depends greatly on the radiator material,

it is important that the material used for the radiator be carefully

selected. Perhaps the most significant criteria for selection are the

heat transfer-to-weight ratio, probability of no penetration-to-weight

ratio and buckling strength-to-weight ratio. These are summarized in

Table 12. On the basis of data currently available, perhaps aluminum

is the best choice among the readily available structural materials.

The influence of the structural design and fabrication detail are

considered beyond the scope of this study.

- % -

SID 66-1739



NORTH AMERICAN AVIATION, INC.

(_ SPACE and INFOR,'_IATION SYSTEMS DI_.'ISION

!

l

I

T

i

i

u

t

-o

E_

e)

,H

.rl

I1)

ID

(1)

- 95 -

SID 66-1739



NORTH AMERICAN AVIATION, INC.
SPACE and INFORMATION SYSTEMS DIVISION

O
.H
-O

0
r--I

cd

f_
Q)

{H
_ ,,,-_

_ 0

0

rl

E_

h

Z

3
F-

8
N

"4

2

II.

'7

[

.I

m

j. 4= £ -

.

h II - I II

a. _- _1 _ _ _- _"_-

Jl" :_]t,_ }.-

-" -" ...-: ,_ a-

, _ n __] . , ,, .x
n <_ _- -c - _ _-

k_

._

£

o

i'

_._
_._

i

tt ....,

_,,o

2
,_.. _) _ _

-,,- t

- 96 -

SIO 66-1739



iit

NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEMS DIVISION

,.Q

0
0

E
(/3

=
°,-4

¢)

u
.f-.4

0
L)

_J

{fl

=

a.a

¢d

"0
op-i

0

(fl

=
0

'Z

,4
r--I

..O

i =

(_o _
"_ u o

"'_

c;
._,,..

O
or-I _

_ _" 121
N m

,x_ ¢) A

II ii_

Z _

A

_ o

_ v

A

4-1

!

_ O

Zv L)

A

_ °E_ u :> u

o o
o • o

0 0

-t- O "_
txl m

u_ N
,_ vl o

II II

S _

Z Z

¢M

c;

.-1

,x3
=k

v

'--"4

O

v

¢M
o o
o
_1_ o

II

,.o

2:

_ o
_ o

rq
A

o

v

Z)

_A

1_ o

o
A

m V
o

• 0
0 ,--_

II

,..o

Z

O

+

Z

4-,1

O
>
<

<

+
¢M ¢M

O
>
<

_-i II

°,"_ I1)

2 _

ID m

_ m

"_ "Z

_u

' N

u _

@

- 97 -

SID 66-1739



NORTH AMERICAN AVIATION, INC. SPACE and INFORMATION SYSTEm, IS DIVISION

o
.rl
.0
o
o

Q)
c/)

._
%
QI

0

._

0

rJ_

r-t

0

0
_.,-I

._._
ID

.rl

0
II

o
_._

_°
ID ,,_,

0

0
e*-I .0 0
0 I ",-_

r--t _ .0

!

II

o_ 0
o ._

°_-_ 4-_

0

v

I

f_.o

.0

o 0

,d
tll
U

II

,--t

o

- 98 -

SIO 66-1739



NORTH AMERICAN AVIATION, INC.
_ SPACE and INFORMATION SYSTE,_IS DIVISION

Weight Analysis

Since the radiator may be a major contributor to the total weight

of a recycle cooling system such as a closed loop liquid system, a

weight analysis was initiated to determine the percentage contribution

of the radiator elements, to establish a probable range of radiator

weight per unit area, and to determine the influence of material den-

sities. This information should be helpful in making preliminary

design estimates and to know the sensitivity of the radiator weight
to various f actors.

One radiator configuration has been investigated which is illus-

trated in Figure 55. It is considered to be a practical configuration

which can be either an integral part of a vehicle structure or as a

separate, mountable panel. Also, as illustrated in Figure 55, a

relatively simple means for providing meteoroid protection can be
incorporated into the design. One additional consideration that

enters into the design is the ease of fabrication.

For this analysis, the total radiator weight was divided into the

f_n weight, the tube weight, the fluid holdup weight, and the header

weight; the total radiator weight equals the sum of these four

components. Table 13 summarizes the equations used in the analysis.

For purposes of the weight analysis, three different cases were

analyzed for assumed values for radiator dimensions and material

densities and with the additional assumption that all parts of the

radiator are of the same material. Table 1A gives the dimensions

and densities used in the analysis.

The results of the analysis is given in Table l_. As indicated,

the radiator fin is the major contributor to the total weight, nearly

two-thirds of the total. Reducing the fin area, fin thickness and

material density are the obvious ways to reduce the overall radiator

weight. The fluid holdup is the next major contributor. A fifty

percent reduction in fluid densitywill reduce the overall weight by

about ten percent. Thus, some weight reduction may be possible by a

combination of a reduction in fluid density and the amount of fluid

holdup. The radiator tubes and the headers make a small contribution
to the total weight and thus the pressure drop and flow conditions

should dictate the size of the tubes or flow passages.

For rapid approximation of a radiator weight, a specific weight

of about one pound per square foot (1 lb/sq ft) appears to be reason-
able based on the assumed material densities.

From the foregoing, it is obvious that significant weight savings

can be achieved by considering an integral radiator and vehicle

structure, even at the expense of requiring a larger radiating surface

to accommodate possible unfavorable orientation of the orientation of

the radiating surface with respect to the incident heat loads.
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Tubesw

"1 i

Sh,eldeJ Tubes

£,ec_'ion A-A (Rof4l'e,_,_o")

Figure 55. Rectangular Radiator Configuration
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Table ]4. Space Radiator Weight Summary

n

Sfin , ft

Lh, ft

d i , ft

_t , ft

Lw, ft

Pfluid , lb/cu ft

#fin , lb/cu ft

Fin Weight, Wfi n , lb

Tube Weight, Wtube , lb

Fluid Weight, Wflui d , lb

Header Weight, Wheader , lb

Total Weight, lb

Wfin/Wtotal , %

Wtube/Wtotal , %

Wfluld/Wtotal , %

Wheader/Wtotal , %

Radiator Area , sq ft

Radiator Weight/Area , lb/sq ft

A

5.0

O.00_0

0.0833

0.0250
0.0020

5.000
6O.OOO

150.oo0

2.50

.5_

._9

.07

3.595

69.50

I_.88

13.52

2.0_

B

I0

O.OO&O

0.2500

0.0500
0.0020

I0.000

60.000

150.000

30.00

_.I0

11.88

1.25

&7.223

63.50

8.68

25.11

2.6_

lO

0.005

0.250

0.050

0.0025
I0.000

6O.O0O

15o.ooo

37.50

5.16

11.88

1.6o

56.1_

66.70

9.20

21.12

2.85

50.00

1.123
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The above analysis did not include the influence of a meteoroid

armour such as a relatively simple one indicated in Figure 55. A

weight analysis of the simple armour, which consisted of doubling

the thickness of the external, flat surface of the tubes, indicates a

possible five to ten percent increase in the total radiator weight.

This suggests that the addition of a meteoroid armour would be highly

desirable if a significant increase in probability-of-no puncture

is possible. This will be investigated further as part of the system

reliability-weight trade-off.

o('/e Ratio Selection

As a continuation of the work described in Section 2.3._ of the

first quarterly report, Reference l, the effect of surface coating

(_/e) on equilibrium temperature of a flat radiator located on a

vehicle surface which is perpendicular to the earth surface and in a
circular earth orbit at a height of _00 nautical miles was analyzed.

For the analysis, an equilibrium heat balance equation was used in
which the terms were rearranged to solve for the _/_ ratio:

I 4 _Q.. -- e, ,/eA1°('/e = Qs +Qs=

<'<i,: - ]

where :

C1 = Qs + QSR, Btu/(hr)(sq ft)

C2 =QEE, Btu/(hr)(sq ft)

Qint = equipment heat load, Btu/hr

T = radiator equilibrium temperature, R

QS --direct solar heat, Btu/(hr)(sq ft)

QSR = reflected solar heat, Btu/(hr)(sq ft)

_R = planetary emission, Btu/(hr)(sq ft)

The above equation was used to make the graphic presentation in

Figure 56 for the case of maximum environmental heat load for three

values of the term Qint/_A. It is to be noted that a family of such
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Figure 56. _/_ Ratio Versus Radiator Temperature

|.O

Figure 57.

4-So

Emissivity Versus Radiator Temperature

- 101+-
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curves would be useful for the rapid selection of the ratio _(/@ ,

emissivity (6), and the radiator area for a range of equipment heat

loads for a particular radiator equilibrium temperature. Another

possible use of a plot similar to Figure 56, is in estimating the

effect of a change in the ratio _/_ for a particular radiator design.

The degradation of the surface coating due to space environmental

condition could result in the increase in the ratio %/_ , and thus
as indicated in Figure 56, the radiator temperature would increase

for a particular heat load and radiator design. Although a more
detailed analysis would be required before a definite conclusion can

be made, it does appear that the radiator temperature does not vary

appreciably for a relatively large change in the ratio #c/e for a
given heat load and radiator area.

For the case of minimum environmental heat load, when only the

planetary emission is considered, the emissivity and not the ratio

is solved from the equilibrium, heat balance equation. The
resulting equation is :

= Q, e / A ( T* -- )

The graphical presentation of this equation is given in Figure

57 for three values of Qint/A. Figures such as Figure 57 together

with figures similar to Figure 56 provide a useful means for making

rapid, preliminary estimates of radiator performance for varying con-

ditions. For example, the sensitivity of the radiator temperature
with changes in the surface coating due to environmental conditions

can be readily assessed. The need for compensation for degraded per-
formance can be readily determined.

Equation _ on Page 79 of the first quarterly report, Reference
l, is in error and should be corrected to read as:

The equation given on Page 80 in the same quarterly report should
also be changed to read as:

- 105 -
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÷ -. +o-cA ,-,A

r _-(,-<,-{,-(=)

2.3.5 Temperature Regulation

There are a number of methods or combination of methods which

can be used to achieve the required temperature regulation of a

recycle cooling method with a space radiator for heat rejection.

Table 15 gives a list of alternate methods for the cases of constant
coolant circulation rate and variable coolant circulation rate. Fixed

radiator and radiator by-pass methods are brief]y discussed in the

following paragraphs. These and the others listed in Table 15 will

be investigated in more detail during the next quarterly period.

Perhaps the simplest method to achieve temperature regulation is

to vary the coolant flow rate to adjust to the variation in the heat

rejection rate and/or the external environmental conditions. No

radiator by-pass or means for varying the radiator effective area or
surface characteristiCs would be used. The variation in coolant flow

rate could be achieved by varying the pump speed or by increasing _he

line pressure drop or by the combination of the two. The required

control elements would be a temperature sensor located at the equipment
coolant inlet or outlet or sensors at both the coolant inlet and outlet

and a controller to regulate the pump speed or to regulate a restrictor

to vary the line pressure drop. The effect of varying the flow rate

with variation in heat loads will be to vary the temperature levels

from the design points throughout the closed liquid loop and only the

temperature differences across the equipment and radiator would remain

constant. Since the temperature of the coolant into the equipment is

equal to the temperature of the coolant out of the radiator, variations
in the heat load will result in variations of coolant temperature into

the equipment.

To illustrate the variation in the coolant temperature out of the
radiator with variations in the flow rate and the heat loads, the

- 106 -

SID 66-1739



NORTH AMERICAN AVIATION, INC.

//

/, SPACE and INFORMATION SYSTEI%IS DIVISION

Table 15. Alternate _ethods for Temperature Regulation

W (constant)

i. Radiator by-pass
(vary flow to radiator)

Diagram_

2. Segmented radiators with by-passes

(vary flow and/or radiating area)

Diagram

3. Vary radiator orientation
•movable radiator

•vary vehicle attitude

_. Vary radiator surface

characteristics (s,-rface coat£ng)

5. In-line regenerator with by-pass

Diagram_

6. In-line heat source

•electrical heat

•waste heat

7. In-line cooler

(auxiliary heat sink)

J/

Diagram

Diag _ram ,_

(variable )

1. Fixed radiator

2. Radiator by-pass
(vary flow to radiator)

Diagram a_

3. Segmented radiators with by-passes

(vary flow and_or radiating area)

Diagram b_)

&. Vary radiator orientation
• movable radiator

• vary vehicle attitude

5. Vary radiator surface

characteristics (surface coating)

6. In-line regenerator with by-pass

Diagram Q

7. In-line heat source

-electrical heat

•waste heat

8. In-line cooler

(auxiliary heat sink)

/

®f

Diagrams
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following equation was derived for the equilibrium case:

where :

tro = coolant temperature, radiator outlet, F

C ^Lo-Tt

A = radiator surface area, sq ft

Cp = coolant specific heat, Btu/(lb)(F)

qE = equipment heat load, Btu/hr

qnet = net heat rejected to space, Btu/hr

Ta = coolant temperature, equipment outlet, R

ta = coolant temperature, equipment outlet, F

W = coolant flow rate, lb/hr

6 = radiator surface emissivity

_- = Stefan-Boltzmann constant

By expressing the various terms as a ratio with respect to the

design point condition, the above equation becomes:

where :

tb = design point coolant temperature, radiator outlet, F

subscript des = design point
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Figure 58 is a graphic presentation of the above equation in
which the following values were assumed:

_cb = 4oF

The second method for temperature regulation is one which employes

a radiator by-pass to meet the varying heat load conditions and to
maintain a constant flow rate to the equipment at a constant inlet

temperature. This approach simplifies the pump and drive motor design

and permits them to be operated at or near optimum speed. Another
advantage of this arrangement is the constant fluid flow at constant

inlet tamperature to the equipment which permits closer temperature

tolerance a_A at or near opt£mo_m temperature range for the equipment.

For the varying heat load condition, the use of the radiator

by-pass requires a corresponding variation in the radiator surface
characteristic and/or the surface area, ((-A). There are several

approaches which may be used to achieve the required changes in the

product (6 A), which were mentioned in the previous quarterly report,

Reference l, pages _7-%8.

The following equation was derived to shs_ the relationship between

the coolant outlet temperature from the radiator (tro/tbdes) and the
variation in the hat load (q/qdes) and by-pass flow rate (WR/WT) for

the equilibrium case.

Figure 59 is a graphical presentation of the above equation. To
achieve the required coolant outlet temperature from the radiator, the

corresponding variation of the radiator area and/or emissivity (E A)
may be determined from the equation:

÷
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Figure 58. Radiator Outlet Temperature Versus Flow Rate, No Radiator By-pass
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t_/t b = Z.O

Figure 59. Radiator Outlet Temperature Versus Flow Rate, Radiator By-pass
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tl.

Figure 60 is a graphical presenation of the above equation for
two values of the radiator effectiveness ratio.

In Figures 59 and 60, the following values were assumed:

(ta/tb)de s = 2 and (tb)de s = _0 F

b

2.3.6 Heat Sinks

Most of the energy used to operate electronic equipment ultimately

appears as heat in the immediate environment of the equipment. The
heat is removed by either active or passive method or both and is

disposed in a sink. There are a number of heat sinks that may be used

with the various heat removal methods (active or passive). The

selection of the heat sink or sinks depends upon the amount of heat to

be rejected and the duration for heat rejection which will result in a

minimumwei ght system.

The various heat sinks and the regions of applicability are

illustrated in Figure 61. The regions or boundaries have been estab-

lished on the basis of providing a minimum or least weight heat sink.

In order to develop these regions of applicability, a number of

assumptions and estimated values have been used. For this reason,

Figure 61 represents an initial attempt to provide a very useful

means for selecting heat sink to meet a particular requirement.

Additional refinements in Figure 61 will be made and possibly several

heat sink maps will be made for different assumptions and values for

the numerous parameters or variables involved. The following is a
brief discussion on the various heat sinks.

Thermal Mass

All equipment has some mass associated with it. The heat which

appears when the electrical energy is dissipated causes the equipment

mass to raise in temperature. This is directly proportional to the

energy involved and inversely proportional to the heat capacitance

(mass times specific heat). When the amount of heat is very small
(in relation to the heat capacitance), the temperature rise is also

small and no further thermal consideration is necessary. As the

duration and heat loads increase, more energy must be absorbed.
Additional mass can be used but this will result in considerable

weight penalty. If a 20 F rise in temperature is permitted, even
the best material will absorb only about 20 Btu/lb of material.

For exs_mple, aluminum will absorb only about _ Btu/lb and steel, only
about 2 Btu/lb. The thermal mass is applicable for extremely small

power dissipations or extremely short power spikes or where the
material serves some other useful function. This type of heat sink

can be regenerated (temperature reduced to original value) indefini-
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f'_ �el. = Z.O

1.0

O.Z

0
0 0.?.. 0.4-- O.G 0.8 1.0 I.Z

Heat

Figure 60. Radiator Area Ratio Versus Heat Load Ratio
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te_y, thus the useful capacitance may be several times the actual
heat capacitance.

Heat of Fusion

When the total heat to be dissipated becomes appreciably larger,

a more efficient heat sink is necessary. A number of materials

which undergoes a change in state from a solid to a liquid may be
used to absorb heat. As much as 138 Btu/lb can be removed in this

manner. The heat of fusion limits the temperature rise of the elec-

tronic equipment to a narrow temperature band. Heat is also absorbed

below and above the change of state temperature by capacitance. The

containment of the change of state material must be flexible enough

to account for some change in volume. This heat sink can be regen-
erated so its useful heat capacitance may be several times the heat

of fusion. Figure 62 shows the heat of fusion for several different

substances at the temperature the change of state occurs. Additional
information can be obtained from Reference 12.

Expendables

The use of expendables as a heat sink has been discussed in

Section 2.2.2 and the utilization of residual hydrogen in Section

2.3.3. The information provided in these two sections were used to

establish the regions of applicability in Figure 61.

The weight penalty for utilization of expendables include the

lines, pressurization, coolers, connectors,valves, etc. necessary to

utilize the expendables. In many instances the utilization of avail-

able expendables will not be practical. However, the ability of

expendables to be used on a demand basis makes the use of expendables

particularly attractive for peak (spike) loads since they reduce the
size of radiators and make their load more uniform.

Radiation

The theory and application of radiating surfaces for heat rejection

to space is well known and is widely used in past and current space

vehicle thermal system. Since space can be considered to be an

infinite heat sink, the radiating surface or radiator is perhaps the

most efficient method for long duration, low to high heat loads. The

radiator may be classified as passive, semi-active and active, depend-

ing upon the design.

A passive radiator is one in which the equipment to be cooled is
attached directly to the radiating surface. This is a simple arrange-

ment with no moving parts or power requirements. Since no fluids are
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Figure 62. Heat of Fusion Data
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involved, there are no problems of freezing or meteoroid puncture.

It is limited in its application to constant heat loads or to equip-
ment with large temperature tolerance.

A radiator in which a heat pipe with fluid flow but no external

power or moving parts is used to transfer heat from the equipment to
the radiating surface is classified as semi-active. This method

provides some self-regulation to accommodate variations in the heat

rejection load and/or environmental heat load. A closer temperature

tolerance may be maintained by the use of the heat pipe as compared

to the passive method. Relatively large passages for the heat pipe

are required which pose a problem of meteoroid penetration if large
areas or long duration use is required.

A radiator is classified as an active radiator when a circulating

fluid is used to transfer heat from the equipment or source to the

radiating surface. This method provides the maximum temperature
regulation to acconxodate variations in heat loads. The use of fluids

creates the problems of freezing and possible radiator tube punctures

by meteoroids. For long term application, the meteoroid protection
_,ust be .... "_^_ -_ -,_ _--_ _ _,,_^_ ^_ +_ _+^_
we ight.
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2.4

2.4.1

I;TfEGPJ\TEDSYSTI_.{SYNTHESIS AND ANALYSIS

_ne selection of the optimum thermal control concepts for

the various astrionic equipment, must be based on an integrated

thermal system which is a combination of the electronic package
environmental control method and the vehicle thermal system.

This requires the synthesis and analysis at various integrated

systems to establish the preferred ones. Among the important
consideration for the selection of the preferred systems are:

heat load capability, weight, power requirements, volume, area,

reliability, integration potential, and availability. These
factors are considered in the synthesis and analysis of the

integrated systems.

In the following paragraphs, various system concepts are

presented which are considered to be preliminaN/ and these and
additional concepts will be investigated in the next quarter.

This is followed bya discussion on the system reliability.

Thermal System Concepts

A number of thermal control system concepts are shown

schematical/j in Figures 63 and 71. These are described below

with regard to some general characteristics, and no attempt has

been made in the schematics to optimize the number and type of

control components (valves, sensors, etc.). This work will be

continued in the next quarter when more of the details will be
defined.

In Figures 63 through 71, the following s_nnbols are used

to designate the various components of the _rstem:

CP = cold plate

P = pump

PR = pressurization source

SR = sre.ce radiator

C = compressor

HX = heat exchanger

GSE = grotmd support equipment

The concept illustrated in Figure 63 consists of a liquid

coolant loop which picks up the electronic packages heat load in

a cold plate circuit and rejects this load to an expendable

- 118 -
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heat sink (such as water). This system has the advantage of having

few components subject to failure, but system weight becomes
prohibitive for mission durations in excess of a few hours due to

the increasing weight of expendable which must be carried. The

system contains a coolant circulating pump and a water boiler as

well as a liquid-to-liquid heat exchanger. The latter is connected

to the lalmch pad conditioning system and is used only until lift-
off. A water-storage tank and a coolant accumulator are also
shown in the schematics. The accumulator serves to maintain the

pressure at the inlet to the coolant pump at the desired level;

and a source of high-pressure nitrogen gas is used for both liquid

loop pressurization, and e_pulsion of water from the storage tank.

Temperature control of the coolant is obtained _hrough regulation

of the rate of evaporation in the boiler, which must have

sufficient capacity to handle the maxim_n load expected during a

particular mission. Also, =ince mission duration is limited, it

_%y not be necessa_ to provide for standby equipment to take the

ploJce of components -_ich have failed. Hence, no duplicate com-

ponents are sho_.m in the Figure 63 schematic.

To overcome the short-duration limitation of an expendable

heat sink system, a closed-loop liquid coolant system can be

employed. In such a system, shown in Figure 6_, the electronic

packages heat load is transported by the coolant to a space

radiator which serves to reject the heat load to the deep space

heat sink. The radiator must be sized such that its capacity is

sufficient for the maximum expected heat load and under the most

severe ambient conditions likely to be encountered. Temperature

control of the coolant is obtained by means of a b_q_ass around

the space radiator; and coolant loop pressure is maintained

through an accumulator pressurized by a source of nitrogen gas.

As in the expendable sink system, a liquid-to-liquid heat
exchanger has been included to provide for cooling prior to lift-

off. (This type of heat exchanger is shown in all system schematics

and serves the same purpose _n all systems. ) Because the closed-

loop liquid system is applicable to extended duration missions,
dual coolant pumps are included in the schematic. Since the pump

is considered to be the component most likely to fail under con-

stant running conditions, a standby unit provides some measure

of protection against a complete shutdown of the cooling system.

A variation of the closed-loop coolant system is shown in

Figure 65. In this schematic, the b_q0ass aro_md the space radiator

includes a water boiler which can be used to augment the space
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radiator under peak heat load conditions. This arrangement per-

mats the radiator to be designed for the maximum stea_r-state

condition and avoids the excess capacity requirement ef the

basic schematic in Figure 64. Dual coolant pumps are provided

for redundancy, and nitrogen gas is again used for accumulator

pressurization and expulsion of w_ter from its storage tank.

Further refinement of the liquid coolant loop technique is

illustrated in Figure 66, which represents a two-loop arrangement.

One coolant loop transports the electronic packages heat load to

a liquid-to-liql_id heat exchanger, where the heat load is trans-

ferred to the coolant in the second loop. The latter serves to

tr_msport the heat lead from the heat exchanger to a space radiator

for rejection to the deep space heat sink. The advantage of this

two-loop system is that a complete failure of the outer loop, the
one including the space radiator, does not cause an immediate

shutdown of the cooling system. The inner loop can function in-

rl_r_]v _f" f.hp m]f._.r lnnp by mAkin_ use of an emer_encv expendable

heat sink, which is indicated in Figure 66. This expendable heat

sink can also serve to absorb a portion of peak heat loads under

normal operating conditions. The warm coolant leaving the

electronic packages cold plates is shown to pass through the

water storage tank to keep the water in the tank from freezing.

This precaution may be necessary for long duration missions if
the v_ter storage tank is subject to heat loss. Another feature

of the concept shown in Figure 66 is the dual space radiator pro-

vision. In the event that one of the radiators suffers damage

as a result of meteoroid impact, it is isolated from the system

and the other radiator takes over the function of the damaged one.

The two radiators may be comb".ned in a single panel which contains

two separate fluid passages between fin surface areas. It should

also be noted that the liquids in the two coolant loops need not be

the sazle because there is no physical connection between the two
fluid streams.

The cooling system concept illustrated in Figure 67 is simi-

lar to the one shown in Figure 66 except that it includes two

outer coolant loops which are completely independent. The

advantage of this arrangement is that, in the event of excessive

coolant loss from one loop, another is available to take its

place. Although both this and the previous schematic show

the accumulator for the inner lomp upstream of the cold plates,

it is pointed out that this arrangement was done purely for

convenience. In an actual system, the accumulator will generally

be near the pump inlet because it is the point of lowest system

pressure.
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t

h different means of providing redundancy is shown in Figure
68. The concept illustrated is similar to the one in Figure 65

except that two complQtely independent coolant loops are provided.

With this design, no single component failure can induce a complete

cooling syste_n shutdown. Of course, the penalty for carr_jing the

extra weight of the dual system must be evaluated in terms of

the alternatives, which include the possibility of a premature
shutdown of the cooling system and mission failure.

Prima_j cooling system pezformance can also be augmented

through utilization of the sensible heat capacity of cryogenic

hTdrogen vent gas, which may be available during certain missions.

Utilization is implemented through a suitable liquid-to-gas,

counterflow heat exchanger, as illustrated in Figure 69. The

addition of this heat exchanger is the only basic difference
between the schematic sho_.m here and the one in Figure 66.

Another variation of a cooling system which utilizes

llydrogen vent gas is shown in Figure 70. This concept is similar

to the previous one, except for addition of a second, outer

coolant loop which is completely independent. As indicated earlier,

the provision of this degree of redundancy must be evaluated in

terms of applicable penalty factors.

The last of the conceptual arrangements considered up to

this point is shown in Figure 71. In this case, the heat

rejection capacity of the liquid coolant system imder peak heat

load conditions is supplemented by a vapor cycle refrigeration

system. Aside from this feature, the concept shown is similar

to the one in Figure 67. The heat exchanger in the refrigerant
loop is essentially an evaporator which absorbs heat from the

liquid coolant, and the space radiator acts as a condenser.

Because rotating components are considered to be subject to

failure, a dual compressor system is indicated.

All of the foregoing concepts were devised on the basis
of providing some degree of alternate heat rejection capacity

in case of system or component failure. Possible major failures

may occur in:

(I) moving parts, such as pumps or compressors

(2) radiators, through puncture or other damage causing leakage

(3) heat exchangers, through leakage, and

(I_) valves and/or control systems

A secondary failure may be considered to be leakage at Joints

or connections which develops after some period of system operation.
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2._.2 S_stem Reliability

General Considerations

Prime aspects in the attainment of highly reliable heat

transport fluid _jstems for electronic package thermal condition-
ing are exardmed. Design considerations are discussed with

respect to averting orminimizing the general t_es of failures

to be anticip.?ted in liquid systems applicable to missions up
to 1BO days duration.

The basic system is considered to consist of a closed

recirculating loop containing manifolded "cold plates", s_ce

radiators for heat rejection, circulating pump, and liquid
accumulator(s) to maintain pressurization and accommodate

differential expansion coefficients of the metal system and con-

tained liquid. The basic system will not be complete without the
addition of: GSE shielding, preconditioning and checkout dis-

connects, a therm_l regulation system of sensors, sensor conditioners,

program logic controller, power amplifiers, power driven valves,
and usually provision for liquid filtration. Additional items

that may be provided include heaters to prevent fluid congealing

in radiators, heat exchangers for peak load management, or inter-

facing with other available environmental control systems to

support or receive support from such systems.

The basic system may be required to operate continuously,

or intermittently, remain dormant for a major portion of its life

or perform according to on-board preprogrammed or remotely supplied

commands. In addition, the system must accommodate the higher aero-
thermo launch and perhaps re-entry regimes plus vehicle orientation

changes and permit operation during prelaunch checkout on the pad

and during associate contractor equipment integration and assembly

at the launch "site. Interconnection of the system thermal loop
while in sp_ce transit or orbit with the ECS of other vehicles

that may rendezvous also may be desired. During ground operation
there may be the requirement of avoiding problems associated with

collection of water condensed from the atmosphere.

Ideal operating conditions for a recirculating liquid loop

would be those approaching a continuous steady state which would

permit a minlmumof equipments and a control consisting of the

switch to apply power to the circulating p_np motor. When

redundancy of motors and coolant loops are provided the minimum

of monitoring will increase to permit system condition evaluation
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and transfer of functions 6o the alternate equi_nent. As the

system function becomes further removed from steady state to meet

operating mode changes and thermal transfer variations the

equipment items including sensors and controls plus redundancy

for contingencies will increase further requiring more detailed

attention per item to assure the same level of reliable operation.

Reliability Aspects of the Liquid Loo_. Principal reliability

design objectives generally common to liquid loop systems are
the provision for assured containment and pressurization of the

liquid volume and the maintenance of its circulation. Thermal

transfer capability will be impaired or lost _M_enever the integrity

of any one of these three objectives is degraded. Progressive

loss of the thermal transfer fluid from the loop leads to ultimate

system failure. Internal loop leakage causing bypassing or short

circuit conditions also can affect system f_mctions significantl,%

Inadequate liqLLid pressurization will penmit cavitation of the

pump, insufficient circulation, and probable pump failure. _e

foregoing failure modes are associated _rlth system leakage (with

possible exception of a spring loaded rather than gas pressurized

accumulator) that result in thermal transport failures. Circula-

tion deficiencies also can fail the system by causes which include

corrosion product or foreign matter plugging, pump, valve or

b_Tass control _stem failure and radiator or other s_stem element

failure and radiator or other system element freezin_E.

D__es_ilnA2p!o_.achesfg_Rel__abili_. The three principal reliability
objectives_i_quid cont_i_m-_ pressurization- and cireulation)

provide general criteria for good design, approaches when the
potential failure modes discussed above are considered.

Ideal System. An ideal liquid containment approach suggests the

use of a c_mplete_r contained, hermetically sealed unit requiring

only a clamping in place and the attacl_ent of signal, control and

power leads. Any integration of the _Tstemwith other equipment
would avoid fluid disconnects for installation, checkout, servicing

and interfacing with GSE. Practical considerations require com-

promise with the ideal approach; however the fluid interfaces may

be minimized and baclmp design measures plus effective closeout

procedures will provide effective results approaching the ideal
_,stem.
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Leakage Contingenc_T. Further assurance of system success is

available by use of two completely separate loops so that possible
leakage of one will not result in loss of fluid in the other. Two

channels in the individual cold pl_£es and space radiator panels

plus dual lines and auxiliary equipment are necessar-j. Additional

backup cooling may be obtained by use of hydrogen vent gas when

available. Thermal transfer may be achieved by a liquid gas heat

exchanger or possibly by direct admission of the gas to appropriate

liquid channels after the liquid is purged from necessa_, portions

of the system. The later method would require in addition to sizing

and control considerations, the precaution to avoid blockage by
freezing if the liquid is dumped into space.

Pressurization. Liquid pressurization may be achieved by gas
pressurization with a bladder liquid interface contained in a

tank-sized to provide reserve fluid for minor leakage less and

perhaps a heat sink afforded through preiaunch liquid chilling

and valving. Liquid pressurization may be provided by means of
spring loaded bellows ts_pe accumulator located at the suction side

of the recirculating pump(s). The sizing of the bellows t_rpe

accumulator generally provides a rather limited reserve of liquid

useful to make-up fluid loss. Redundancy of the bellows system

in a given loop does not appear warranted for leakage or spring

failure. The accumulator liquid reserve usually is relatively

small and spring failure is considered to have a low probability

of occurrence. The gas pressurized accumulator is dependent upon

the integrit_r of the bladder and the support of a regulated gas
pressurization avstem. The Apollo command module utilizes both

types of accumulators in a primary- loop and the smaller bellows
accumulator nnly in the backup loop.

Circulation. Assurance of recirculating flow can be enhanced by
the use of standby redundancy, of the pump unit so that failure

of either unit does not cause system loss. Sensing for evaluation

and switching controls will be necessa_j a_uncts to this approach.

Pump design and selection will emphasize zero external le_=age

and long life for adequate levels of reliability under continuous
or intermittent duty.

Possible circulation stoppage resulting from corrosion or

breakdown products plugging orifices, filters or valves can be

minimized by selection of materials for compatibility, adequate

filter sizing, and equipL_ents least sensitive to fouling. Over-

pressure relief or bypass and other "fail safe" approaches are

additional measures to assure circulation continuity.
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Control. The application of st_ndby redundancy for high levels of
reliability requires the use of sensing equi_nent for system

condition evaluation by vehicles or ground crew/onboard computer,
and the necessa_r command and control for function transfer.

General practice in the manned Apollo system is to provide standby

redundancy of some sensors in each loop plus redundancy in the

signal conditioning and control amplifier systems. Utilization

of the redundant items in some portions of the system is exercised

by manual switching of electrical connectors in the crew compartment

to place the alternate or standby unit in operation. Unmanned

systems ,:ould provide this fimction with additiona_ complexity

which may be warranted upon special evaluation of the particular

functions and their relation to the mission objectives. Transfer

or isolation of some system functions by manual valve override also

is provided in the manned Apollo systems.

Other controls which may be tied to the basic thermal loop

controls are those necessary for effective operation of equipment

such as an evaporative heat exchanger. System control of the

evaporative fluid admission and its rate of evaporation by steam

valve outlet pressure reg_11ation will be required. The steam

outlet valve may require heating to prevent freezing and consequent
impaired _fficiency in use of the expendable evaporative liquid.

Fail safe or override control may be considered in the detail design

approach to a specific system application.

A thermal control system which is to r_nain "dormat" for a

significant portion of the mission will require analysis of start

up requirements and the capability of satisfactorily providing ade-

qute reliability. A frozen space radiator would require defrosting

by raising temperature above the congealing condition that the

circulating pump could handle. Lower freezing point liquids or

continuous heat load or reorientatoon of the appropriate space

radiator panels are methods for considerations in the intermittent

or dormant system. Thermal system controls should also be capable

of start up operation from the dormant state upon receipt of

appropriate commands. This portion of the system may require a

controlled environment to maintain the ready state condition.
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System Effectiveness Analysis

The reliability and system effectiveness becomes very closely
related for the unmanned system because the man-machine interface

is ineffective after launch. Such is the case for the thermal system
under study. To faciltate a study of the reliability/effectiveness

problem, a simplified logic diagram was prepared and is given in

Figure 72. The components described by each block are at the assembly

level, those typical of the Apollo type design. For each block a failure

hazard was estimated, based on Apollo II level but projected into the
1975 time frame.

S&ID data indicates that the reliability of any state of art system

when expressed in terms of failure hazard, can be improved by a factor

of between 5 and I0 for any given five year period. This assumes that a

reasonable effort is maintained to accomplish this improvement. Using

these data, the estimated probability of mission success for the

"single thread" or non-redundant system would be no more than 0.9h5

for the 180 day m_ssion. This in itself may be sufficient but when

considered in conJunction with all the other missions may have to be

"weekest link" bud not meet its apportioned .....__.,._._j1_4_*_. ,_^more
desirable value was estimated to be greater than 0.995.

Given that the "single thread" design is unsatisfactory, a cursory
weak link analysis was made as reflected in Table 16. The intent was

to determine those elements that were introducing the higher failure

hazards, determine the cause and/or failure mode and then determine a

potential design corrective action. The results are reflected in the

table, the objective can be achieved with little difficulty and with
the contemporary technological capability.

Corrective Action Considerations. The major contributors to system

unreliability and ineffectiveness are the space radiators and the cold

plates. Their major failure modes are quite similar though some causations

are different; they can either leak, clog or burst, in that order of

relatlvity. These willbe considered separately.

Space Radiators - can fail due to a meteoroid puncture, the probability

of occurrence is inversly proportional to the wall thickness as shown in

Figure 73. Recent data from Pagasus seems to indicate that the puncture

hazard is very remote indeed, at least for Apollo type design. The dotted

line on the figure reflects the estimated Apollo value and the recommended
thickness. The burst failure mode is even more remote since reasonable

design _actice and proof testing can virtually eliminate the possibility.

Clogging is a very real possibility as previously discussed, even after

normal precautions.
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Functional

Assemblies

1. Space Radiators

2. Temperature

Control Assembly

3. Check Valve and
Shutoff Ass.

4. Evaporator Temp.
Control

5. Pump Assembly

6. Evaporator

7. Heat Exchanger

8. Heat Ex. GSE

9. Plumbing

lO. Control Valve

ll. Coldplates

12. Shutoff Valve

13. SR. Check Valve

14. Pressure Relief

System

Table 16. Thermal System Weak Link Analysis

and Suggested Design Sections

Estimated

Failure

Hazard
(xlO )

I0.I

1.03

0.667

0.485

O.183

O.172

O.170

O.170

O.lO

0.02

(O.O1 ea)

.OO04

.0002

.0002

13.098

Failure

Hazard

Goa_
(xlO°)

O.1

O.1

O.1

O.1

O.183

O.172

O.170

O. 170

0.I0

0.02

0.i

.OO04

.0002

.0002

1.358

Required Design
Action

Separate into multi-section

with separate flow control,

use 6 to 8 separate loops.

Use redundant assembly with

an error sensor, non-oper-

ating.

Use double redundant check

valves. Others acceptable.

Use redundant controller

with error sensor.

Acceptable as is.

Acceptable as is.

Acceptable as is.

Acceptable as is.

Acceptable as is.

Acceptable as is.

Where more than lO are used

they should be separated

into several loops with flo_
control.

Acceptable as is.

Acceptable as is.

Acceptable as is.

Design as a "sealed" unit.
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= 2.5 X lO-4 Kv 1/3 (Ar)O.30 f(p(o) )

h.O

3.0

f(P(o))

2.0

1.0

<C_co)) : [_c_/_co))}o._o[_-_co_7°-3°

50 60 70 80 90 iOO

Probability of No Puncture, P(O)' %

Figure 73. Probability of No Puncture Versus Thickness Factor
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With all of the foregoing factors considered, the space radiators

do present a high failure hazard. The best way of off setting this

potential problem is illustrated in the recommended configuration and

demonstrated by the curves of Figure 7/,. By dividing the total required

area into a number of separable loops and slightly overdesigning for the

total area, the space radiator functional reliability and effectiveness
can be increased to meet any reasonable requirement. A minimum of four

loops seems optimum in light of the complexity introduced by the larger
number of loops.

The Cold Plates - present almost an equal level of unreliability,

when all are considered a requirement. They also can plug upjleak or
burst, in that order of expectancy. The arguments for and against are

similar to the space radiators except that leaks will be caused by

various forms of overstress. Plugging will be the most prominent failure
mode and a parallel channel design within the plates combined with

multiple loops for the main feed will reduce the hazard to an acceptable

level as shown by Fiugre 75. The higher the number of loops, the less
the chance of the total function (cold plate cooling) will be out of

commission. The chance that one specific one will be out is acceptably

low, but the chance that one of many will fail is sufficiently high to
warrant dividing into several loops. It is recommended that no more

than five plates be in any individual loop and where a concentration

of heat requires a larger area, it should be separated or be partically
cooled by two loops.

Preliminary Conclusions. - The available data indicates that

a carefully designed system could probably achieve a reliability of 0.995

or better. A potential configuration, designed to achieve this goal and

maintain a semblance of simplicity is presented in Figure 76. An

approximation of the equivalent mission success logic is presented in

Figure 77 where some of the multiple redundancy, possible with the

recommended design, is demonstrated. The recommended design provides
for up to six different operating modes, excluding cold plate considera-

tions. Cold plate configuration alternatives are many and must be

taylcred to the very _pecific design; in any event, a minimum of four

more alternatives are possible.

Increasing the reliability and subsequent effectiveness of a thermal

control system does impose penalties in the form of additional weight and

power consumption. Within reasonable goal limits, the penalties for high
reliability are not expected to be excessive. The requirements are

obviously a function of mission duration and/or duty cycle control. If

all systems functions were in use (worse case) the effect on weight for

high reliability would be as estimated in Figure 78. The 180 day mission

with the suggested goal would raise the total weight by a factor of less

than 1.5 over the non-redundant weight.
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I

Figure 7A. Reliability of a Space Radiator as a Function of Sectionalizing

Figure 75. Coldplate Reliability Consideration
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Figure 77. Revised Mission Success Logic For The Potential System
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Figure 78. Weight Penalties Imposed by Varying

Reliability Goals and Mission Durations
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3.0 FORECAST FC_ NEXT QUARTER

The major effort during the next quarter will be directed toward the

synthesis and analysis of integrated instrument package and vehicle thermal

systems. The parametric study and trade-off analysis at the component and
subsystem level will be continued but at lower level of effort. A minimal

effort will be conducted to complete the survey of developmental trends in

the review of astrionic equipment and temperature regulation concepts, and

in defining the astrionic equipment and equipment functions for the selected
future missions.

Competitive integrated thermal control systems for thermally condition-

ing electronic packages for the various Saturn mission/vehicle combination

will be established. For the competitive systems, sufficient data will be

provided to permit rational evaluation and selection of optimum or near

optimum systems. Among the significant system data to be provided includes:

weight, reliability, power requirements, surface area and space requirements,

developmental requirements and probability of successful development within

the required time period.

System analysis to be conducted include design point and off-deslgn

performance analysis, reliability analysis and weight analysis. The

performance analysis will consist of material and heat balances to establish

efficiencies, flow rates, pressure drop, process material input-output

rates, operating temperatures, cooling and/or heat requirements and power

requirements. Reliability analysis will be made of the various approaches

to achieving the desired reliability goals which are consistent with the

overall mission success. The weight analysis will be made to provide total

system weight as well as weight breakdown which will include: basic hardware

weight, expendable weight, power penalty weight, and other possible penalty

weights. These analyses will provide the data for system trade-off or

comparative analysis.

At the component and subsystem level, the major effort will be devoted

to the temperature regulation or control concepts and to establishing the

regions of applicability of heat sinks. In conjunction with this effort,

the heat pipe theory and concepts will be investigated since heat pipes

appear to be highly feasible for certain applications.
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APPENDIX A

DESIGN OF GLYCOL COOLER USING HYDROGEN VENT GAS

Hydrogen Inlet Conditions

Temperature = 42°R

Pressure = 3.5 psia

Able to use with subcooling to 29.5°R

No entrained liquid in hydrogen vent gas

Triple point temperature = 2/+.8OR

Triple point temperature = 1.O2 psia

Cooling Fluid Inlet and Outlet Conditions

Temperature in = AO°F (500OR)

Temperature out = 20°F (_80°R)

Pressure drop in cooler = 0.5 psia

Pressure in lines at least 2 psi above vapor pressure

CompoSltion40%water + 60% ethylene glycol

G_vcol flow = &75 lb/hr (2 KW heat rejection)

Design Criteria

To insure that under no conditions does the heat exchanger freeze up or
congeal (assumed -AO=F) the wall temperature is always maintained above

this temperature. The specific method involved is to see what ratio of

glycol to hydrogen hA's is required at the design point to obtain this

wall temperature at selected points through the exchanger and to use
three (3) times this value for design point calculations to give a

safety factor. The glycol side must have no welds within the exchanger.
The cooler wil] be welded into the glycol circuit.

Hydrogen Properties

T°R Enthalpy Viscosity Pr 2/3 C
P

_2 325 Btu/lb .0036 ]b hr ft .8 approx. 2.55 Btu/(lb)(°F)
]I+1.5 576 .0090 .8 2.55

23_ 828 .012_ .8 2.90

317.5 1079 .0153 .8 3 •IA

395 1331 .0177 .8 3.30

Cooling Fluid Properties

AO°F e = 69 lb/cu ft 22 17.0 .72

20°F e = 69 lb/cu ft 38 23.5 .70

O°F e = 69 lb/cu ft 68 35.0 .68

The wide variation in hydrogen properties makes necessary the separation of

the exchanger into different areas to be calculated separately.
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Proposed Design

A single uniform glycol tube of aluminum .030 wall thickness .875 O.D.

with .030 fins; initially the fins to be 1/4" to 1/2" in length which is

equivalent to 8 fins around the interior and brazed in place.

Heat transfer area = 2 x 8 x .28 + .81 = _._8 + 2.55 = 7.03 ="/" length
= .586 m'/' length

Thru flow area = .812 x Ir/A -8 x .28 x .03 = .515 -.067 = ._98 _"

Glycol o = _75 x _44 = 137,2oolb/hr/.'= 38 lb/sec/s'
._98

Re = 137,200 x .2_ = 75.2 assumes film T = 20°F
38 x 12

@ Re = 75.2 St pr2/3 = .020 f = .22

hO = G Cp (St pr2/3) Pr-2/3 = 137,200 x .70 x .020 x 1/23.5 = 82

_P/ft = G2 x f x A = 38 x 38 x .22 x 7.03 x 12 = .08& psi/ft

9275 x x Ac 9275 x 69 x ._98

Heat Transfer Area Hydrogen = .875 x lr= 2.7_ _"/"

Area ratio 7.03 = 2.57 .586= .228 _'/'
2.7_ 2.57

For the purposes of calculation the heat exchanger will be broken into four

exchangers of equal cooling capacity and an initial hydrogen in temperature
of A2°R and hydrogen exit temperature of 395°R assumed.

Permissible Hydrogen Coefficient

For the wall temperature to be -iO°F (the assumed freezing limit) the

ratio of hot side divided by cold side temperature differences are cal-

culated. A parallel flow heat exchanger is assumed.

Initial _00-420 = 80 = l_____ 3rd I/A
A20-A2 378 A. 72

A8_-42o = 6...%t_ =
20-317.5 i02.5 i.58

Ist i/& A95-A20 =75 _ 1 Final 480-420 = 6__O0= i_.__
_20-IAI.5 278.5 -Sq_ A20-395 25 .i15

2nd 1/_ 4_0-420 =18.._= 1_20-23&
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The permissible hydrogen coefficient can be determined by taking the glycol

coefficient and correcting this for the area ratio (2.57) the temperature
ratio (I/_.72) and the reciprocal of the safety factor (1/3).

82 x 2.57 = IA.9 3rd i/A
Initial hh = j x I+.72 hh = 82 x 2.57 = A&.&

3 x 1.58

82 x 2.57 = 18.9 82 x 2._7 = 169
ist I/_ hh =_ Final hh- 3 x .A15

2nd 1/_
82 x 2._7 = 26.3

hh = 3 x 2.66

Assuming these coefficients can be obtained and using the average hydrogen

coefficient, the UA and NTU's per linear foot of exchanger of the first quarter
of the overall exchanger are calculated. The effectiveness required is

calculated and the NTU's necessary to obtain this effectiveness is calculated

by dividing the NTU's required by the NTU's per linear foot the length

required for the first 1/_ of the exchanger is determined. This is repeated
for the remaining quarters of the heat exchanger.

_ 1 + 1( ) ist I/&/linear ft 82 x .586 16.9 x .228

NTU's = UA - 3.57 = .216/ft
Cmin 6.8 x 2.55

= .0208 + .259 = 1
3.57

req. 6 = I_1.5 -&2 = 99.5 = .217
500 -_2 _58

NTU's req. = .25 Length req. = .25 = 1.15 ft = 13.8 in
.216

2
(&) 2nd i/_/linear ft = .0208 + _i_V'-"._+ 26.3) P _ 228X

1
- .0208 + .193 =

NTU's = UA____= _.67 = .252/ft
Cmin

req. 6, = 2,3L, -141. _ = _ = . 262
A95 -IAl. 5 353

NTU's req. = .305
•305= 1.21 ft = 1A.5 in

Length req. = .252

(U_) 3rd 1/A/linear ft = .0208 + (26.3 + _4.4) x .228

1
= .0208 + .z2_ = 6-_

UA_L = 6.9 = .336/ft
NTU's = Cmin "6.8 x 3.02 req. 6 =_= 885_ = .326&90 -23&

NTU's req. = .392 Length req. .392= 1.17 ft = i_.0 in
= .336

-A3-
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I 2 - .0208 + .0938 = 1( ) _th I/_/linear ft = .208 + (_._ + 169) x .228

UA = 8.62 = .393/ft req. _ = _ = _ = ._62NTU's= _ _.8 x 3.22 _85 -317.5
mln

NTU'sreq. = .625 Length req. = .625 = 1.59 ft = 19.2"
.393

Overall Length = 13.8 + Ii.5 + IA.O + 19.2 = 61.5 ,,use 68"

Glycol Pressure Drop = .O8_ x 68 x 1/12 = ._75 ib/cu in

Glycol Film Temperatures

Initial 500 -&2 = _58 ° .4_8 = 15.1OF
2(1 _ 3 x &.72)

_O'F -15.1 = 2_.9"F film temperature

Ist i/& 195 - i_1.5 = 353.5°F 353._
2(1 + 3 x 3.72)

35°F -IA.5°F = 20.5°F film temperature

= I_.5OF

2_6 =
2nd i/& A90 -23_ = 256 2(i + 3 x 2.66)

30°F -IA.6 = 15._°F film temperature

I_.6°F

3rd i/& _85 - 317.5 = 167.5 167"_
2(1+3 xl.58)

25°F -I_.5 = IO.5°F fi_m temperature

= l&. 5OF

Final &80 -395 = 85 85..... = 18.9°F
2(1 + 3 x .&i6)

20°F -18.9 = I.I°F film temperature

Initial assumed film temperature = 20°F would give lower glycol coefficients

and thus require more area in last portion of heat exchanger. This is

sufficiently close so that calculation can proceed with hydrogen side of heat
exchange r.

- A_ -
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Hydrogen Film Temperatures

Initial Wall Temp.
1/6
1/2
3/4
Final

500 -2 (15.1) = 669.8°R (9.8OF)
695 -2 (14.5) = 466°R (6.0°F)
69O-2 (16.6) = 660.8°R (.8°V)
685 -2 (_.5) = 656°R (-6oF)
680 -2 (18.9) = kA2.2°R (17.8°F)

Hydrogen Film Temperatures and Physical Properties

Initial (669.8

i/_ (666 +

1/2 (46o.8
3/6 (456 +
Final (642.2

(St Pr) 2/3 G Calculation Use

Initial ]4.9 = G 2.94

I/4 18.9 = G 3. l0

1/2 26.3 G 3.20

3/4 66._ = G 3.28

Final 169 = G 3.33

+ 42).5 = 255.9°R .0132
]41.5).5 = 303.7°R .0150
+ 236).5 = 367.60R .0163
317.5).5 = 386.7°R .0175

+ 395).5 = 618.6°R .0185

h = G Cp (St Pr2/3)Pr-2/3

(st pr2/3) i.25
(St Pr 2/3) 1.25

(St pr2/)) 1.25

(St pr2/3) 1.25

(St pr2/3 ) 1.25

PR2/3 Cp

.8 2.96

.8 3 .I0

.8 3.2O

.8 3.28

.8 3.33

(St pPrr_2_31G = 4.05(St G 6.88
(St pr2/3) G 6.57

(St Pr2/) ) G 10.8

(St Pr 2/3) G 40.5

Calculate Required Dimensions of Hydrogen Passage

The hydrogen heat transfer coefficient was used to calculate the required
(St PrH/D)G value. An I.D. for the hydrogen is selected by trial and

error such that the resulting G value gives a Reynolds nun;ber and con-
sequently (St pr2/3 ) value such that the required (St pr2/3) G value is

obtained. This is repeated for each portion of the heat exchanger.

Hydrogen Weight Flow = 2 x 3413 = 6.8 ib/hr
1331 -325

Initial I.D. = 1.312 A- 1.312) 2 -(.875) -- 1.352 -.601 = .751
O.D. = .8_9_Z_ 6

•637 = Hyd Dia.

Q _ 6.8 x 144 = 13o5
.751

Re = .437 x 1305 = 3610
12 x .0132

(St Pr2/3) O = .0031 x 1305 + 4.05 check

f = .0091

(St pr2/3) = .0031

- A5 -
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= .25o A E
O.D. .875

•375 = Hyd Dia.

6•8 x 144 = 1560 Re = :_7_ x .1560 = 3250 f = .OO9_
G = .627 12 x .O150

(St pr2/3)

(St pr2/3) G = •0031 x 1560 = 4.84 close

= .0031

1/2 I.D. = 1.155 A = .155)2 -(.875) [ = 1.O46 -.601 = .M+5
oD.

•280 = Hyd Dia.

G 6.8 x 144 = .28 x 2200 = 3150 f = .0094
= .62+5 = 2200 Re 12 x .0163

(St Pr2/3 )

(St Pr2/3) G = .003 x 2200 = 6.60 close

= .003

314 E 2I.D. = 1.O50 A = 1.O5) -(.875 = .865 -.601 = .264

O.D. =.875
•175 = Hyd Dia.

•175 x _710 = 3090 f = .0093
6.8 x 144 = 3710 Re = 12 x •0175

.26_
(St pr2/3) = .0029

(St Pr2/3) O = .0029 x 3710 = 10.76 close

A smoothed plot of required (St pr2/3) G stops at .93 through the exchanger

at a value of .23 calculated from .75 to •93.

•93 I.D. = .960 A =_.96) 2 -(.875)_= .72A -.601 = .123
o.o.=.875

•085 = Hyd Dia.

G - 6.8 x 144 = 7960 Re = •085 x 7960 = 3110
.123 12 x .O181

(St Pr2/3) G = .0029 x 7960 = 23 check

f = .0093

(St Pr213) = .0029
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For the last 7%,the hydrogen side stays constant in cross section and heat

transfer coefficient, i.e. 96 Btu/(hr)(sq ft)('F). This will require an

increase in area of the last 7%. This can be determined as follows:

1 1 = .0104+.00475=.01515
U @ .93 = _6 + 82x2.57

Previous U final = 1 + 1 = .006 + .00475 = .01075
167 x 1 82 x 2.57

.O1515/.O1075 = 1.41 average increase = (1.hl + 1.O) x .5 = 1.21

19.2 x .07 • .25 = 5.4 5.4 x 1.21 = 6.5 6.5-5.4 = l.l"

increase overall length l,,i.e.68" goes to 69"

The hydrogen pressure drop is calculated for both a 10 psi initial pressure

and a _5 psi initial pressure. The calculations show that at or below

3.5 psi the exchanger will have a reduced hydrogen flow and capacity.

1st 1/4
Initial Pressure lO psia i#/0" = 27.7" H20

io 2 520= .0186
42 e= .0765 x _ x _-_ x I00

2

_us. loo°R ( .158
3600 j

G=1305

2[286_
1432

_e=-_ .o 6
25.6 _)

(.0 + .O091 13.8 x 2.77 x

.689

AP = (.0254)(.6+1.27) = .048"H20

2nd 1/4 141.5

2_/A__
2 1375.5

187.7

= .0765 x iO_O__x 2 520 = .0089 1560
14.7 2-'9x 190 2200

2[3760
1880

Use 190°R .18802_ 2-_
t3-Eg6)-._

= .2'/3 (.0?65) (.0093 14"_ x 2.77 x
AP 25.6 ".0089 .536

1.25

22.LL@91
1.2

_P = (.0919)(1.65) = .146"H20

.751

.627
__ 211.378

.Eg9

277.000
.048

276.952

.627

2LL!:9  
.536

0o91

2LO185
.oo93

276. 952

.146
276.806
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3rd 1/4
10 x 2 x 2_ = .0067 2200 .445

234 @ = .0765 x _-_ 2-_ 276 _ .26/_

2L_ 21.709
2 [_ r2955_ 2 .355

3600 _ = "675

14.0 x 2.77 x + .-8_J )aP= •6-i?i(_)
25.6 .0067

(.0095
.355

1.155

22.L_itt
i.I

aP = (.301)(2.3) = .70"H20

276.806

,?0
276.106

The 4th quarter of the exchanger will be broken into two parts the first
18% the second 7_.

4th i_

395
_7.5
81.5

18 e= .0756 ._est. 2 520
x 2-_ = 58.8 ]4.7 x_x 346.9

8_.8+ 3.17.5 = 346.9
2

(.0__0_7_%(.0093
aP = 25.6 ".0053"

aP = (1.48)(3.94) = 5.82

13.8 x 2.77 _i

.194

(3_00 _ = 2.63

+ .87>J )

2__
277 x i0 = 9.85 very close

3710 .26&

= .0053 __

2nl__2 .LOAf
5835 .194

.96

i.o_
2 12.01

1.005

276. ii

>.S2
270.29

4th 7%

317.5

365.3

2 [761.3
38O.7

9.6 est.
e = .0765 _.7

aP = _.a.L (_)(.0093
25.6 .oo47

aP= (3.11)(2.86) = 8.90

2 _20
x 29 x 380.7

=. 0047

( 7960_2= 4.90
3600"

6.5 x 2.77

.123
+ .875J )

270.29
8.9O

261.39 "H20 final pressure
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Pressure Drop Hydrogen

Initial Pressure 3._ psia Triple Point 1.02 psia
3. _ psi = 96.8"H20

_.? 2 52o = .oo652ist I/& _= .0765 x x _ x Ioo

Ap = .158 (_2) ("6 + .OO91 13.S x 2.'/7x + -_-_j
25.6 .689

2nd I/A _=

3rd I/h

Ap =

(.073)(i.S7) = .137"H20

.0765x _ 2 _ .00311
14.7 _ x 190

_ (.O093 14" 5 x 2.77 x
25.6 (.00311)

.536

AP= (.263)(1.65) = .A33'_20

= .6765 Xl_'._7 est. 2 520
x 2-_x 2-_-= .ool7

A P "_. (.o_o_ I1= ".OO17" (.0095 l&.O x 2.77 x +

.355

96.8O0

96.663

_._A//_
96.230

2.01

94..220
_./_0
7A.82

44._
30.32

_P = (.875)(2.30) = 2.01"H2C

The hth quarter of the exchanger will be broken into two parts. The
first 18% the second 7%.

_th 18% _= .0765 3"--!-iest" x 2__x 520 = .00161
14.7 29 3&7

4p = 2._z_ (.O765, 13.8 x 2.77 x [i + i._75] )
25.6 ".0016' (.0093

•19h

ap= (h.gl)(3.gh) = 19.h"H20

9h.2

9.7
x 3.5 = 3.05

96.8 close

2.0 est. 2 x520 = .00095
Ath 7% 8 = .o765 _77 2-9 380.7

[-

A P=&'9 (.0_0_ _( _o_ 6.5 x 2.77

25.6 .00095" ...... .123

75
22.____2
52.8 x 3.5--1.91
96.8

not too far off

n P= (15.5)(2.86)= m_.5

Final pressure 30.3 "H20
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